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Useful Tools from Logic

Some of the tools from mathematical logic which enjoy

applications in algebra, combinatorics and number theory are

• the Compactness Theorem

• Transfinite Induction (or the Axiom of Choice, or Zorn’s

Lemma)

• Ultraproduct Constructions

• Back-and-Forth Constructions

• Fraïssé Limits

• Order Indiscernibles
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Ax-Grothendieck Theorem

A map f : Cn → Cn is polynomial if

f (z1, . . . , zn) = (f1(z1, . . . , zn), . . . , fn(z1, . . . , zn))

where each fj(z1, . . . , zn) ∈ C[z1, . . . , zn], i.e. each fj is a

multivariate polynomial.

Theorem (Ax (1968), Grothendieck (1966))

Let f : Cn → Cn be a polynomial map. If f is one-to-one, then f

is onto.

James Ax
(1937-2006)

Alexander
Grothendieck
(1928- )
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Ax-Grothendieck Theorem

Theorem (Ax (1968), Grothendieck (1966))

Let f : Cn → Cn be a polynomial map. If f is one-to-one, then f

is onto.

Ax’s original proof uses the Compactness Theorem of

first-order logic to reduce this to the case of polynomial maps

f : Fq → Fq where the result is obvious.

Borel also gave a topological proof (1969). Rudin’s analytic

proof (1995) is less pretty, but avoids model theory.

Serre discussed these proofs in How to Use Finite Fields for

Problems Concerning Infinite Fields (2009).
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The Lefschetz Principle: Another Example

Theorem

Consider a linear system

(*) Ax = b

where A ∈ Zm×n and b ∈ Zm. Then one of the following two

possibilities holds:

(i) For all but finitely many primes p, the system (*) has a

solution x ∈ Fn
p. In this case, (*) has a solution x ∈ Qn. OR

(ii) For at most finitely many primes p, the system (*) has a

solution x ∈ Fn
p. In this case, (*) has no solution x ∈ Qn.

It is not possible that (*) has solutions for infinitely many primes,

and is insoluble for infinitely many primes.

The most elementary proof uses the theory of Smith Normal

Forms. A short, elegant proof can be given using the

Compactness Theorem.
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The Compactness Theorem of First-Order Logic

Compactness Theorem

Let Σ be a set of sentences in a first-order language L. If every

finite subset Σ0 ⊆ Σ is satisfiable (i.e. has a model), then Σ is

satisfiable.

Example

Let L be the language of ordered rings, with constant symbols

‘0’,‘1’,‘ε’; symbols ‘+’,‘×’ denoting binary operations; the symbol

‘−’ denoting a unary operation; and the symbol ‘<’ denoting a

binary relation. Let Σ be the infinite set consisting of

• the axioms for an ordered field; and

• for every n ≥ 1, an axiom 0 < ε + ε + · · ·+ ε
︸ ︷︷ ︸

n times

< 1 .

Every finite subset of Σ is satisfiable in Q or in R; so there exist

infinite ordered fields containing infinitesimals.
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Ramsey’s Theorem

Theorem (Finite Version)

Let k , m, r ≥ 1. There exists N = N(k , m, r) such that for every

set X with |X | ≥ N and every k-colouring of the r-subsets of X ,

there is an m-subset of X , all of whose r-subsets have the

same colour.

Theorem (Infinite Version)

Let k , r ≥ 1. For every k-colouring of the r-subsets of N, there

is an infinite subset A ⊆ N, all of whose r-subsets have the

same colour.

The infinite version implies the finite one, by a compactness

argument. And the infinite version is easier to state, and to

prove, than the finite version.
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Chromatic Numbers of Infinite Graphs

A proper colouring of a graph Γ is a colouring of the vertices

such that no two adjacent vertices bear the same colour.

The chromatic number χ(Γ) is the minimum number of colours

used in any proper colouring of the vertices of Γ.

Another application of the Compactness Theorem:

Theorem

Let k ≥ 1, and let Γ be an infinite graph. If χ(Γ0) ≤ k for every

finite subgraph Γ0 ⊂ Γ, then χ(Γ) ≤ k.
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Philosophical Considerations

Proofs by model-theoretic methods are sometimes shorter or

more natural than alternative proofs obtained by other means.

Concern may be expressed over the liberal use of the axiom of

choice (AC) in model theory. But often, proofs obtained by

these methods can be rewritten so as to obtain more

‘constructive’ proofs not requiring AC.

The model-theoretic language often serves as a convenience

rather than as a necessity. Its use is similar to proofs in discrete

mathematics that appeal to R or to C, where typically a finite

extension of Q suffices.
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Ultraproducts

Let Mα (for α ∈ A) be models of some set of formulas Σ. (Think

of Σ as a set of axioms satisfied by every Mα.) We take the

index set A to be infinite; the models Mα need not be distinct.

The ultraproduct construction (details omitted) gives

M =
(∏

α

Mα

)/

ultrafilter

which is also a model of Σ, often with many new and interesting

properties.

An ultraproduct of infinitely many copies of R gives the field of

hyperreal numbers, an ordered field containing finite, infinite

and infinitesimal elements.

An ultraproduct of Fp (as p ranges over the primes) gives a field

F of characteristic zero, but having a unique extension of

degree k for each k ≥ 1.
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Generalized Quadrangles

A generalized quadrangle (GQ) is a point-line incidence

structure in which every non-incident point-line pair (P, `) has

exactly one line through P meeting `:

We assume every point is on more than two lines; and every

line has more than 2 points.
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Semifinite Generalized Quadrangles

We say the GQ is semifinite if it has infinitely many points and

lines, but the number of points on each line (always the same

number) is finite. (Open question: Can this happen?)

There is no semifinite GQ with line size 3 (Cameron, 1981

. . . one paragraph).

There is no semifinite GQ with line size 4 (Brouwer, 1991

. . . three pages).

There is no semifinite GQ with line size 5 (Cherlin, 2005

. . . seven pages of model theory).

Nothing is known for line size ≥ 6. Experts differ on whether

semifinite GQ’s may exist at all.
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GQ’s and Model Theory

Cherlin applied techniques of model theory to the study of

GQ’s.

Model Theory GQ’s

However, the study of GQ’s is also applied to model theory.

GQ’s arise in the investigation of the Cherlin-Zil’ber Conjecture,

one of the leading open problems in model theory.
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Geometric Proofs by Transfinite Induction

Consider the affine 3-space F 3 = {(x , y , z) : x , y , z ∈ F} over a

field F . It is easy to partition the points of F 3 into lines (e.g.

using all lines parallel to a given line). The following is trickier:

Theorem

If the field F is infinite, then F 3 r {(0, 0, 0)} can be partitioned

into lines.

This is not hard to prove by transfinite induction. The result fails

for a finite field |F | = q since q3 − 1 is not divisible by the line

size q.

I have used similar arguments for other geometric partition

problems, e.g. partitioning all but one point of a quadratic cone

into conics.
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Polynomials Producing Primes

The polynomial f (x) = x2 − x + 41 famously has prime values

for x = 0, 1, 2, . . . , 40. (Not an accident: the discriminant

D = 1 − 4·41 = −163 yields a quadratic extension Q[
√
−163]

with unique factorization.)

There is no nonconstant polynomial f (x) ∈ Z[x ] that has only

prime values for x ∈ Z.

It is not known if f (x) = x2 + 1 is prime infinitely often for x ∈ Z.

More generally, there is no polynomial f (x) ∈ Z[x ] of

degree > 1 that is known to realize infinitely many prime values

for x ∈ Z.

But. . .
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Polynomials Producing Primes

For a, b, c, . . . , z ∈ N, the polynomial P(a, b, c, . . . , z) defined by

has the set of primes as its positive values (i.e. it takes on every

prime value, and no other positive values).

The same is true for the values of

P(1+a2
1+a2

2+a2
3+a2

4, 1+b2
1+b2

2+b2
3+b2

4, . . . , 1+z2
1+z2

2+z2
3+z2

4 )

for a1, a2, a3, a4, . . . , z1, z2, z3, z4 ∈ Z.
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Completely Enumerable Sets are Diophantine

This says less about the prime numbers than you might think.

Surprisingly, it is also true that the set

A = {10, 1010, 101010
, 10101010

, . . .} is the set of positive values

of some multivariate polynomial over Z. And for the same

logical reason:

MRDP Theorem (Matiyasevich, Robinson, Davis, Putnam)

Every completely enumerable set is Diophantine.

A ⊆ N is completely enumerable if is the set of values

generated (eventually) by some Turing machine (or computer

program) that runs forever.

A ⊆ N is Diophantine if it is the set of positive values of some

multivariate polynomial over Z.
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Hilbert’s Tenth Problem asked for an algorithm for determining

whether a given multivariate integer polynomial has integer

solutions.

Corollary

No such algorithm exists.
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Independence Results

Gödel’s Incompleteness Theorem

There exist statements which are true for N, but which can

neither be proved nor disproved using Peano’s axioms.

The earliest explicit example of such a result (Paris and

Harrington, 1977) is a slightly strengthened form of the Finite

Ramsey Theorem.

Gödel’s Theorem applies to all other available axioms for N.

Theorem (Matiyasevich)

For every choice of axioms for N, there exists a Diophantine

equation which has no solutions in N, but for which this cannot

be proved using the chosen axioms.
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