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Thomson modeled atoms
as knots 1n the ether

William Thomson ( ( ‘N
(Lord Kelvin) N S J

1824—1907




Bohr’s model

Niels Bohr of the atom
1885-1962



| REALLY THINK
KNOTS ARE
AS GOOD A

DESCRIPTION
OF ATOMS
AS I'VE SEEN!

James Clerk Maxwell
1831-1879



Peter Guthrie Tait Began to make a
1831-1901 catalog of knots...



Catalog of Knots
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The trefoil knot 3, 1s 3-colorable

- e Arcs of the knot diagram
\ are colored red, green
/7 pas and blue. All three
| colors must be used.
'

* At each crossing point,
either one color or all
three colors appear.



The knot 4, 1s not 3-colorable
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This shows that

3-colorable not 3-colorable
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Tretoil knot 3, 4,



And that

3-colorable not 3-colorable

AN AN
4 A 4 N

* (O

Trefoil knot 3, Unknot 0,




But why ...

not 3-colorable not 3-colorable
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James Alexander
1888—1971
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Alexander polynomial
of the knot 4,



X

c d
X 0
1 1=

= =1l

0
— |
Ix 0

a b

A 1-X X
X

C 0
D




>A:=matrix([[1l-x,x,x,0],[-1,0,-1,1-x],[0,-1,1-x,-1]1, [x,1-
x,0,x]1);

1 —x X X 0 ]

-1 0 -1 1 -—x
4= a1 1-x -1

X 1 —x 0 x|

>adjoint (A) ;
r=3x"+x x-3x4+x x-3x+x x-3x"4+x

r-3x+tx X -3x4+x xX-3x+tx x¥-3x*4+x

x’+3x-1 —x*+3x-1 —=x*+3x—-1 —x"+3x-1

_—x2+3x—1 xX*+3x-1 —x*+3x-1 —x2+3x—l_
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Alexander Polynomials of Knots
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Prime Factorization of Knots
and their Alexander polynomials

(1-X+X?)(1-3x+%?)
1-3X+X%2




But inequivalent knots sometimes
have the same Alexander polynomial!

1-5Sx+12Xx%—15x%3 1-5x+12Xx%—15x%3
+12X*—5x°+x° +12X*—5x°+x°




Found connections between
von Neumann algebras and
geometric topology,
resulting 1n a new

polynomial invariant
for knots.

Vaughn Jones
(1952— )

% Awarded the
+ & Fields Medal |
& in 1990




Jones Polynomials of Knots
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These inequivalent knots have
different Jones polynomials!

X2+3x1-5 X 0+3x>-6x*
+8X—8X2+9x3_8x4 +8X 38X 2+9x 17
+5X°-3X0+X’ +5X-3X2+X3
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There do exist inequivalent knots
with the same Jones polynomial.

It is not known whether the unknot
1s the only knot with Jones polynomial = 1.
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Unknot 0,

Jones polynomial = 1
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1007 DNA topology

linking difference of the substrate. This is due to the trapping of writhes (or
nodes) in interwound DNA (see Chapter 2, Section 4.2) between the interacting
recombination sites. Non-supercoiled (nicked-circular) DNA molecules can,
under certain conditions, constitute suhstrates ination and, at low
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Figure 6.7, Site-specific recombination by resolvase. (a) A domor circle carrying a
transposon of the Tnd family forms a co-integrate with the acceptor DNA circle. The co-
integrate carries two copies of the transposon. The action of resolvase catalyses a
recombination reaction between res sites within the two transposons to yield the caten-
ated product circles, each carrving a single copy of the transposon. (b) Scheme for the
formation of multiple knotted and catenated products by Tn3 resolvase. Successive
rounds of recombination generate the products shown in the upper row. These products
can be rationalized by proposing a synaptic process involving three nodes (lower row)
(b redrawn from ref. 84. Copyright 1985 by the AAAS).




Knots and catenanes

(e)

Figure 4.1. Electron micrographs of DNA knots and catenanes. Knotted and catenated
DNA were coated with RecA protein prior to visualization by electron microscopy. {(a)
Trefoil (3-noded knot) (reproduced from.ref. 6). (bY Five-noded knot (reproduced from

1. 26). {c) 13-noded torus knot (reproduced from ref. 27). (d) Singly-linked catenane
(reproduced from ref. 23). (e) Catenane consisting of five circles (reproduced from ref.
23). (P Figure-eight (five-noded) catenane (reproduced from ref. 6).(a), () reprinted by
permission; Copyright © 1983 Macmillan Magazines Limited; (c), (d), (e) Copyright 1980,
1985 Cell Press.
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