Some Remarks on Isomorphism Testing

G. Eric Moorhouse

Department of Mathematics University of Wyoming

RMAC Seminar—6 March 2015

G. Eric Moorhouse [Isomorphism Testing](#page-44-0)

← ロ → → イ 同 → →

An *isomorphism invariant* on C is a map f taking objects $C \in \mathcal{C}$ to objects $f(C) \in \mathcal{D}$ (for some category \mathcal{D}) such that

$$
C_1\cong C_2\ \Rightarrow\ f(C_1)\cong f(C_2).
$$

f is a *complete isomorphism invariant* if

 $C_1 \cong C_2 \Leftrightarrow f(C_1) \cong f(C_2).$

In order for *f* to be useful,

- **•** *f* should be efficiently computable; and
- \bullet isomorphism should be more readily testable in D than in C.

The map *f* is not usually functorial. But. . .

K 母 → K ヨ →

An *isomorphism invariant* on C is a map f taking objects $C \in \mathcal{C}$ to objects $f(C) \in \mathcal{D}$ (for some category \mathcal{D}) such that

$$
C_1\cong C_2\ \Rightarrow\ f(C_1)\cong f(C_2).
$$

f is a *complete isomorphism invariant* if

$$
C_1\cong C_2\ \Leftrightarrow\ f(C_1)\cong f(C_2).
$$

In order for *f* to be useful,

- **•** *f* should be efficiently computable; and
- \bullet isomorphism should be more readily testable in D than in C.

The map *f* is not usually functorial. But. . .

← 伊 ト + ヨ ト

An *isomorphism invariant* on C is a map f taking objects $C \in \mathcal{C}$ to objects $f(C) \in \mathcal{D}$ (for some category \mathcal{D}) such that

$$
C_1\cong C_2\ \Rightarrow\ f(C_1)\cong f(C_2).
$$

f is a *complete isomorphism invariant* if

$$
C_1\cong C_2\ \Leftrightarrow\ f(C_1)\cong f(C_2).
$$

In order for *f* to be useful,

- **•** *f* should be efficiently computable; and
- **isomorphism should be more readily testable in** D **than in** \mathcal{C} .

The map *f* is not usually functorial. But. . .

← 伊 ト + ヨ ト

An *isomorphism invariant* on C is a map f taking objects $C \in \mathcal{C}$ to objects $f(C) \in \mathcal{D}$ (for some category \mathcal{D}) such that

$$
C_1\cong C_2\ \Rightarrow\ f(C_1)\cong f(C_2).
$$

f is a *complete isomorphism invariant* if

$$
C_1\cong C_2\ \Leftrightarrow\ f(C_1)\cong f(C_2).
$$

In order for *f* to be useful,

- **•** *f* should be efficiently computable; and
- **isomorphism should be more readily testable in** D **than in** \mathcal{C}

The map *f* is not usually functorial. But. . .

A *loop* is a set *L* with a binary operation satisfying

- **•** There exists 1 ∈ *L* satisfying $1x = x1 = x$ for all $x \in L$; and
- For all $a \in L$, both of the maps $x \mapsto ax$ and $x \mapsto xa$ are bijective on *L*.

G

K ロ ⊁ K 個 ≯ K 君 ⊁ K 君 ⊁

A *loop* is a set *L* with a binary operation satisfying

- **•** There exists 1 ∈ *L* satisfying $1x = x1 = x$ for all $x \in L$; and
- For all $a \in L$, both of the maps $x \mapsto ax$ and $x \mapsto xa$ are bijective on *L*.

ă

④ → ④ ⇒ →

Classification of Bol loops of small order:

All Bol loops of orders $n \leq 16$ not appearing in this table are associative (i.e. groups).

(*) Classification of Bol loops of order 16 due to M. (2002).

∢⊢ਜਾ

Loops

Given a loop $L = \{g_1 = 1, g_2, g_3, \ldots, g_n\}$, define a graph $\Gamma(L)$ having *n*² + 3*n* vertices

 \textbf{Cell}_{ij} , **Row**_i, Col_j, Entry_{*k*} $(i, j, k = 1, 2, \ldots, n)$

where vertex **Cell***ij* is joined to vertices **Row***ⁱ* , **Col***^j* , **Entry***^k* whenever $g_i g_j = g_k$.

Regard Γ(*L*) as a graph with 4 colours of vertices; and graph morphisms are required to preserve the vertex colouring. Then Γ(*L*) is a complete isomorphism invariant of *L*.

Better yet, add three more colours: one each for Row_1 , Col_1 , $Entry_1$.

Even better:

 $($ ロ) $($ $($ $\overline{\theta}$) $($ $\overline{\theta}$ $)$ $($ $\overline{\theta}$ $)$ $($ $\overline{\theta}$ $)$

Loops

Given a loop $L = \{g_1 = 1, g_2, g_3, \ldots, g_n\}$, define a graph $\Gamma(L)$ having *n*² + 3*n* vertices

 \textbf{Cell}_{ij} , **Row**_i, Col_j, Entry_{*k*} $(i, j, k = 1, 2, \ldots, n)$

where vertex **Cell***ij* is joined to vertices **Row***ⁱ* , **Col***^j* , **Entry***^k* whenever $g_i g_j = g_k$.

Regard Γ(*L*) as a graph with 4 colours of vertices; and graph morphisms are required to preserve the vertex colouring. Then Γ(*L*) is a complete isomorphism invariant of *L*.

Better yet, add three more colours: one each for Row_1 , Col_1 , $Entry_1$.

Even better:

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

Loops

Given a loop $L = \{g_1 = 1, g_2, g_3, \ldots, g_n\}$, define a graph $\Gamma(L)$ having *n*² + 3*n* vertices

 \textbf{Cell}_{ij} , **Row**_i, Col_j, Entry_{*k*} $(i, j, k = 1, 2, \ldots, n)$

where vertex **Cell***ij* is joined to vertices **Row***ⁱ* , **Col***^j* , **Entry***^k* whenever $g_i g_j = g_k$.

Regard Γ(*L*) as a graph with 4 colours of vertices; and graph morphisms are required to preserve the vertex colouring. Then Γ(*L*) is a complete isomorphism invariant of *L*.

Better yet, add three more colours: one each for **Row**1, **Col**1, **Entry**1.

Even better:

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

Use two shades of green for **Col***^j* , according as column *j* is an even or odd permutation of *L*, i.e. according to the parity of the permutation $g \mapsto gg_j.$

Use two shades of brown for **Entry***^k* , according to the parity of permutation $x \mapsto y$ defined by $xy = g_k$.

Now Γ(*L*) is a complete isomorphism invariant, taken to be in the category of 10-coloured graphs.

 4 ロ } 4 6 } 4 3 } 4

Use two shades of green for **Col***^j* , according as column *j* is an even or odd permutation of *L*, i.e. according to the parity of the permutation $g \mapsto gg_j.$

Use two shades of brown for **Entry***^k* , according to the parity of permutation $x \mapsto y$ defined by $xy = q_k$.

Now Γ(*L*) is a complete isomorphism invariant, taken to be in the category of 10-coloured graphs.

K ロ ▶ K 御 ▶ K 君 ▶ K 君

Use two shades of green for **Col***^j* , according as column *j* is an even or odd permutation of *L*, i.e. according to the parity of the permutation $g \mapsto gg_j.$

Use two shades of brown for **Entry***^k* , according to the parity of permutation $x \mapsto y$ defined by $xy = g_k$.

Now Γ(*L*) is a complete isomorphism invariant, taken to be in the category of 10-coloured graphs.

K ロ ▶ K 御 ▶ K 君 ▶ K 君

Use two shades of green for **Col***^j* , according as column *j* is an even or odd permutation of *L*, i.e. according to the parity of the permutation $g \mapsto gg_j.$

Use two shades of brown for **Entry***^k* , according to the parity of permutation $x \mapsto y$ defined by $xy = g_k$.

Now Γ(*L*) is a complete isomorphism invariant, taken to be in the category of 10-coloured graphs.

イロト イ御 トイ君 トイ

Let X be a set, and $\binom{X}{k}$ $\binom{x}{k}$ the collection of all *k*-subsets of *X*.

A *two-graph on X* is a subset $\Delta \subseteq \binom{X}{3}$ $\binom{x}{3}$ such that every 4-subset *S* ⊆ *X* contains an even number (i.e. 0, 2 or 4) triples in ∆.

The *degree* of a pair $\{x, y\} \in \binom{X}{2}$ $\binom{x}{2}$ is the number of triples in Δ containing {*x*, *y*}. The *degree sequence* of ∆ is the multiset of degrees of pairs in *X*. It is an isomorphism invariant of ∆.

Let Alt₃ *X* the collection of all 3-cycles of *X*. A *skew two-graph on X* is a subset $\nabla \subseteq$ Alt₃ X such that for every 4-subset $\{x,y,z,w\} \subseteq X$, an even number (i.e. 0, 2 or 4) of the 3-cycles

(*xyz*), (*xzw*), (*xwy*), (*ywz*)

are in ∇.

K ロ ▶ K 伊 ▶ K ミ ▶

Let X be a set, and $\binom{X}{k}$ $\binom{x}{k}$ the collection of all *k*-subsets of *X*.

A *two-graph on X* is a subset $\Delta \subseteq \binom{X}{3}$ $\binom{x}{3}$ such that every 4-subset *S* ⊆ *X* contains an even number (i.e. 0, 2 or 4) triples in ∆.

The *degree* of a pair $\{x, y\} \in \binom{X}{2}$ $\binom{x}{2}$ is the number of triples in Δ containing {*x*, *y*}. The *degree sequence* of ∆ is the multiset of degrees of pairs in *X*. It is an isomorphism invariant of ∆.

Let Alt₃ *X* the collection of all 3-cycles of *X*. A *skew two-graph on X* is a subset $\nabla \subseteq$ Alt₃ X such that for every 4-subset $\{x,y,z,w\} \subseteq X$, an even number (i.e. 0, 2 or 4) of the 3-cycles

(*xyz*), (*xzw*), (*xwy*), (*ywz*)

are in ∇.

 $($ \Box \rightarrow $($ \oplus \rightarrow $($ \equiv \rightarrow $($

Let X be a set, and $\binom{X}{k}$ $\binom{x}{k}$ the collection of all *k*-subsets of *X*.

A *two-graph on X* is a subset $\Delta \subseteq \binom{X}{3}$ $\binom{x}{3}$ such that every 4-subset *S* ⊆ *X* contains an even number (i.e. 0, 2 or 4) triples in ∆.

The *degree* of a pair $\{x, y\} \in \binom{X}{2}$ $\binom{x}{2}$ is the number of triples in Δ containing {*x*, *y*}. The *degree sequence* of ∆ is the multiset of degrees of pairs in *X*. It is an isomorphism invariant of Δ .

Let Alt₃ *X* the collection of all 3-cycles of *X*. A *skew two-graph on X* is a subset $\nabla \subseteq$ Alt₃ X such that for every 4-subset $\{x,y,z,w\} \subseteq X$, an even number (i.e. 0, 2 or 4) of the 3-cycles

(*xyz*), (*xzw*), (*xwy*), (*ywz*)

are in ∇.

K ロ ト K 倒 ト K 差 ト K

Let X be a set, and $\binom{X}{k}$ $\binom{x}{k}$ the collection of all *k*-subsets of *X*.

A *two-graph on X* is a subset $\Delta \subseteq \binom{X}{3}$ $\binom{x}{3}$ such that every 4-subset *S* ⊆ *X* contains an even number (i.e. 0, 2 or 4) triples in ∆.

The *degree* of a pair $\{x, y\} \in \binom{X}{2}$ $\binom{x}{2}$ is the number of triples in Δ containing $\{x, y\}$. The *degree sequence* of Δ is the multiset of degrees of pairs in *X*. It is an isomorphism invariant of ∆.

Let Alt₃ *X* the collection of all 3-cycles of *X*. A *skew two-graph on X* is a subset $\nabla \subseteq$ Alt₃ X such that for every 4-subset $\{x,y,z,w\} \subseteq X$, an even number (i.e. 0, 2 or 4) of the 3-cycles

(*xyz*), (*xzw*), (*xwy*), (*ywz*)

are in ∇.

KO K K @ K K B K K

Let X be a set, and $\binom{X}{k}$ $\binom{x}{k}$ the collection of all *k*-subsets of *X*.

A *two-graph on X* is a subset $\Delta \subseteq \binom{X}{3}$ $\binom{x}{3}$ such that every 4-subset *S* ⊆ *X* contains an even number (i.e. 0, 2 or 4) triples in ∆.

The *degree* of a pair $\{x, y\} \in \binom{X}{2}$ $\binom{x}{2}$ is the number of triples in Δ containing $\{x, y\}$. The *degree sequence* of Δ is the multiset of degrees of pairs in *X*. It is an isomorphism invariant of ∆.

Let Alt₃ *X* the collection of all 3-cycles of *X*. A *skew two-graph on X* is a subset $\nabla \subseteq$ Alt₃ X such that for every 4-subset $\{x,y,z,w\} \subseteq X$, an even number (i.e. 0, 2 or 4) of the 3-cycles

(*xyz*), (*xzw*), (*xwy*), (*ywz*)

are in ∇.

K ロ ト K 何 ト K ヨ ト K ヨ

Let X be a set, and $\binom{X}{k}$ $\binom{x}{k}$ the collection of all *k*-subsets of *X*.

A *two-graph on X* is a subset $\Delta \subseteq \binom{X}{3}$ $\binom{x}{3}$ such that every 4-subset *S* ⊆ *X* contains an even number (i.e. 0, 2 or 4) triples in ∆.

The *degree* of a pair $\{x, y\} \in \binom{X}{2}$ $\binom{x}{2}$ is the number of triples in Δ containing $\{x, y\}$. The *degree sequence* of Δ is the multiset of degrees of pairs in *X*. It is an isomorphism invariant of ∆.

Let Alt₃ *X* the collection of all 3-cycles of *X*. A *skew two-graph on X* is a subset $\nabla \subseteq$ Alt₃ X such that for every 4-subset $\{x,y,z,w\} \subseteq X$, an even number (i.e. 0, 2 or 4) of the 3-cycles

(*xyz*), (*xzw*), (*xwy*), (*ywz*)

are in ∇.

K ロ ト K 何 ト K ヨ ト K ヨ ト

Let X be a set, and $\binom{X}{k}$ $\binom{x}{k}$ the collection of all *k*-subsets of *X*.

A *two-graph on X* is a subset $\Delta \subseteq \binom{X}{3}$ $\binom{x}{3}$ such that every 4-subset *S* ⊆ *X* contains an even number (i.e. 0, 2 or 4) triples in ∆.

The *degree* of a pair $\{x, y\} \in \binom{X}{2}$ $\binom{x}{2}$ is the number of triples in Δ containing $\{x, y\}$. The *degree sequence* of Δ is the multiset of degrees of pairs in *X*. It is an isomorphism invariant of ∆.

Let Alt₃ *X* the collection of all 3-cycles of *X*. A *skew two-graph on X* is a subset $\nabla \subseteq \text{Alt}_3 X$ such that for every 4-subset $\{x,y,z,w\} \subseteq X$, an even number (i.e. 0, 2 or 4) of the 3-cycles

(*xyz*), (*xzw*), (*xwy*), (*ywz*)

are in ∇.

 $(1 + 4\sqrt{10}) + 4\sqrt{10} + 4\sqrt{10}$

A *spread set in GL_n(q)* is a set of $q^n\!\!+\!1$ matrices

 $\Sigma = \{M_0, M_1, M_2, \ldots, M_{q^n}\}$

such that $M_i - M_j$ is invertible whenever $i \neq j.$

If q^n \equiv 1 mod 4, then Σ yields an invariant two-graph $\Delta(\Sigma)$ on $\{0, 1, 2, \ldots, q^n\}$ consisting of those triples $\{i, j, k\}$ such that

det $\big((\textit{M}_i - \textit{M}_j)(\textit{M}_j - \textit{M}_k)(\textit{M}_k - \textit{M}_i)\big)$ is a square in $\mathbb{F}_q.$

The degree sequence of $\Delta(\Sigma)$ is an isomorphism invariant of the translation plane associated to Σ . It is the best practical isomorphism invariant known for spreads; but it does not easily adapt to general theoretical results.

K ロ ト K 何 ト K ヨ ト K ヨ

A *spread set in GL_n(q)* is a set of $q^n\!\!+\!1$ matrices

$$
\Sigma = \{M_0, M_1, M_2, \ldots, M_{q^n}\}
$$

such that $M_i - M_j$ is invertible whenever $i \neq j.$

If q^n \equiv 1 mod 4, then Σ yields an invariant two-graph $Δ(Σ)$ on $\{0, 1, 2, \ldots, q^n\}$ consisting of those triples $\{i, j, k\}$ such that

$$
\det((M_i - M_j)(M_j - M_k)(M_k - M_i))
$$
 is a square in \mathbb{F}_q .

The degree sequence of $\Delta(\Sigma)$ is an isomorphism invariant of the translation plane associated to Σ . It is the best practical isomorphism invariant known for spreads; but it does not easily adapt to general theoretical results.

K ロ ▶ K 御 ▶ K 君 ▶ K 君

A *spread set in GL_n(q)* is a set of $q^n\!\!+\!1$ matrices

$$
\Sigma = \{M_0, M_1, M_2, \ldots, M_{q^n}\}
$$

such that $M_i - M_j$ is invertible whenever $i \neq j.$

If q^n \equiv 1 mod 4, then Σ yields an invariant two-graph $Δ(Σ)$ on $\{0, 1, 2, \ldots, q^n\}$ consisting of those triples $\{i, j, k\}$ such that

$$
\det((M_i - M_j)(M_j - M_k)(M_k - M_i))
$$
 is a square in \mathbb{F}_q .

The degree sequence of $\Delta(\Sigma)$ is an isomorphism invariant of the translation plane associated to Σ . It is the best practical isomorphism invariant known for spreads; but it does not easily adapt to general theoretical results.

 $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$

A *spread set in* $GL_n(q)$ *is a set of* $q^n\!\!+\!1$ *matrices*

$$
\Sigma=\{M_0,M_1,M_2,\ldots,M_{q^n}\}
$$

such that $M_i - M_j$ is invertible whenever $i \neq j.$

If *q ⁿ* ≡ 3 mod 4, then Σ yields an invariant skew two-graph $\nabla(\Sigma)$ consisting of those 3-cycles (*i j k*) such that

det $((M_i - M_j)(M_j - M_k)(M_k - M_i))$ is a square in \mathbb{F}_q .

This is an isomorphism invariant of the associated translation plane; but a less useful one.

There exist non-isomorphic (and non-polar) translation planes with the same skew two-graph. Moreover, no information about $\nabla(\Sigma)$ is provided by degree sequences.

K ロメ K 御 メ K 君 メ K 君 X

A *spread set in* $GL_n(q)$ *is a set of* $q^n\!\!+\!1$ *matrices*

$$
\Sigma=\{M_0,M_1,M_2,\ldots,M_{q^n}\}
$$

such that $M_i - M_j$ is invertible whenever $i \neq j.$

If *q ⁿ* ≡ 3 mod 4, then Σ yields an invariant skew two-graph $\nabla(\Sigma)$ consisting of those 3-cycles (*i j k*) such that

$$
\det((M_i - M_j)(M_j - M_k)(M_k - M_i))
$$
 is a square in \mathbb{F}_q .

This is an isomorphism invariant of the associated translation plane; but a less useful one.

There exist non-isomorphic (and non-polar) translation planes with the same skew two-graph. Moreover, no information about $\nabla(\Sigma)$ is provided by degree sequences.

K ロ ト K 何 ト K ヨ ト K

A *spread set in* $GL_n(q)$ *is a set of* $q^n\!\!+\!1$ *matrices*

$$
\Sigma=\{M_0,M_1,M_2,\ldots,M_{q^n}\}
$$

such that $M_i - M_j$ is invertible whenever $i \neq j.$

If *q ⁿ* ≡ 3 mod 4, then Σ yields an invariant skew two-graph ∇(Σ) consisting of those 3-cycles (*i j k*) such that

$$
\det((M_i - M_j)(M_j - M_k)(M_k - M_i))
$$
 is a square in \mathbb{F}_q .

This is an isomorphism invariant of the associated translation plane; but a less useful one.

There exist non-isomorphic (and non-polar) translation planes with the same skew two-graph. Moreover, no information about $\nabla(\Sigma)$ is provided by degree sequences.

K ロ ト K 何 ト K ヨ ト K ヨ

A *spread set in* $GL_n(q)$ *is a set of* $q^n\!\!+\!1$ *matrices*

$$
\Sigma=\{M_0,M_1,M_2,\ldots,M_{q^n}\}
$$

such that $M_i - M_j$ is invertible whenever $i \neq j.$

If *q ⁿ* ≡ 3 mod 4, then Σ yields an invariant skew two-graph ∇(Σ) consisting of those 3-cycles (*i j k*) such that

$$
\det((M_i - M_j)(M_j - M_k)(M_k - M_i))
$$
 is a square in \mathbb{F}_q .

This is an isomorphism invariant of the associated translation plane; but a less useful one.

There exist non-isomorphic (and non-polar) translation planes with the same skew two-graph. Moreover, no information about $\nabla(\Sigma)$ is provided by degree sequences.

K ロ ト K 何 ト K ヨ ト

Affine Planes (Conway's invariant)

Let A be an *affine plane of order* $n \ge 2$, with a distinguished point *O*. We describe an invariant of the pair (A, *O*). (This may be adapted to an invariant of A or of a projective plane.)

Let $\ell_0, \ell_1, \ell_2, \ldots, \ell_n$ be the lines through *O*. Lines parallel to ℓ_i define a bijection on points $\sigma_{jk}^i: \ell_j \to \ell_k.$ We obtain a two-graph ∆(A, *O*) on {0, 1, 2, . . . , *n*} consisting of those triples {*i*, *j*, *k*} $\mathsf{such~that~the~permutation}~ \sigma_{\mathsf{ki}}^j \circ \sigma_{\mathsf{jk}}^l \circ \sigma_{\mathsf{ij}}^k \in \mathcal{Sym} \, \ell_i$ is odd.

←何 → → 三 → →

Affine Planes (Conway's invariant)

Let A be an *affine plane of order* $n \ge 2$, with a distinguished point *O*. We describe an invariant of the pair (A, *O*). (This may be adapted to an invariant of $\mathcal A$ or of a projective plane.)

Let $\ell_0, \ell_1, \ell_2, \ldots, \ell_n$ be the lines through *O*. Lines parallel to ℓ_i define a bijection on points $\sigma^i_{jk}:\ell_j\to \ell_k.$ We obtain a two-graph $\Delta(A, O)$ on $\{0, 1, 2, ..., n\}$ consisting of those triples $\{i, j, k\}$ such that the permutation $\sigma_{\bm{k}i}^j\circ\sigma_{j\bm{k}}^i\circ\sigma_{ij}^k\in\mathcal{Sym}\,\ell_i$ is odd.

Consider a finite orthogonal space of type $O_{2n}^+(q)$ with $2n$ densider a lime or inegonal space or type $\mathcal{Q}_{2n}(q)$ with $q^{n-1}+1$ singular points, no two of which are perpendicular with respect to *B*.

Assume *q* is odd. The triples of points $\langle u \rangle$, $\langle v \rangle$, $\langle w \rangle$ in O such that

 $B(u, v)B(v, w)B(w, u)$ is a square in \mathbb{F}_q

form an invariant two-graph $\Delta(\mathcal{O})$.

In O_6^+ 6 (*q*), ∆(O) coincides with the invariant of the spread set in $GL_2(q)$ associated to $\mathcal O$ by the Klein correspondence.

K ロ ト K 何 ト K ヨ ト K ヨ ト

Consider a finite orthogonal space of type $O_{2n}^+(q)$ with $2n$ densider a lime or inegonal space or type $\mathcal{Q}_{2n}(q)$ with $q^{n-1}+1$ singular points, no two of which are perpendicular with respect to *B*.

Assume *q* is odd. The triples of points $\langle u \rangle$, $\langle v \rangle$, $\langle w \rangle$ in O such that

 $B(u, v)B(v, w)B(w, u)$ is a square in \mathbb{F}_q

form an invariant two-graph $\Delta(\mathcal{O})$.

In O_6^+ 6 (*q*), ∆(O) coincides with the invariant of the spread set in $GL_2(q)$ associated to $\mathcal O$ by the Klein correspondence.

K ロ ト K 個 ト K 差 ト K 差 ト

Consider a finite orthogonal space of type $O_{2n}^+(q)$ with $2n$ densider a lime or inegonal space or type $\mathcal{Q}_{2n}(q)$ with $q^{n-1}+1$ singular points, no two of which are perpendicular with respect to *B*.

Assume *q* is odd. The triples of points $\langle u \rangle$, $\langle v \rangle$, $\langle w \rangle$ in O such that

 $B(u, v)B(v, w)B(w, u)$ is a square in \mathbb{F}_q

form an invariant two-graph $\Delta(\mathcal{O})$.

In O_6^+ 6 (*q*), ∆(O) coincides with the invariant of the spread set in $GL_2(q)$ associated to $\mathcal O$ by the Klein correspondence.

 $($ ロ) $($ $($ $\overline{\theta}$) $($ $\overline{\theta}$ $)$ $($ $\overline{\theta}$ $)$ $($ $\overline{\theta}$ $)$

The invariant $\Delta(\mathcal{O})$, or its degree sequence, is the best available invariant for ovoids. It is extremely effective at distinguishing nonisomorphic ovoids, or finding explicit isomorphisms when there is one. But:

Conway, Kleidman and Wilson (1988) showed that there is at least one ovoid in O_8^+ 8 (*p*) for every prime *p*.

M. (1993) found additional families of ovoids in O_8^+ $^{+}_{8}$ (ρ) the number of which seems to $\rightarrow \infty$ as $p \rightarrow \infty$. This is an open question which our invariants seem unsuited to resolve.

K ロ ト K 伊 ト K ヨ ト

The invariant $\Delta(\mathcal{O})$, or its degree sequence, is the best available invariant for ovoids. It is extremely effective at distinguishing nonisomorphic ovoids, or finding explicit isomorphisms when there is one. But:

Conway, Kleidman and Wilson (1988) showed that there is at least one ovoid in O_8^+ 8 (*p*) for every prime *p*.

M. (1993) found additional families of ovoids in O_8^+ $^{+}_{8}$ (ρ) the number of which seems to $\rightarrow \infty$ as $p \rightarrow \infty$. This is an open question which our invariants seem unsuited to resolve.

K ロ ト K 何 ト K ヨ ト

The invariant $\Delta(\mathcal{O})$, or its degree sequence, is the best available invariant for ovoids. It is extremely effective at distinguishing nonisomorphic ovoids, or finding explicit isomorphisms when there is one. But:

Conway, Kleidman and Wilson (1988) showed that there is at least one ovoid in O_8^+ 8 (*p*) for every prime *p*.

M. (1993) found additional families of ovoids in O_8^+ $\binom{p}{8}$ the number of which seems to $\rightarrow \infty$ as $p \rightarrow \infty$. This is an open question which our invariants seem unsuited to resolve.

 $(0 \times 10^5) \times 10^5$

Skew Hadamard Matrices

A *Hadamard matrix of order n* is an *n* × *n* matrix *H* with entries \pm 1 satisfying $HH^T = nI$. Hadamard matrices H_1, H_2 are *equivalent* if $MH_1N = H_2$ for some ± 1 -monomial matrices M, N.

Ding and Yuan (2006) constructed a family of difference sets in the additive group of \mathbb{F}_q , $q=3^{2r+1}$ given by

$$
\mathcal{D}=\{x^{10}-x^6-x^2\,:\,0\neq x\in\mathbb{F}_q\}
$$

resulting in a family of skew Hadamard matrices of order $q + 1$ given by $H = \big[h_{\mathsf{x}\mathsf{y}} \big]_{\mathsf{x},\mathsf{y} \in \mathbb{F}_q \cup \{ \infty \}}$ where

$$
h_{xy} = \begin{cases} 1, & \text{if } x = y; \\ 1, & \text{if } x = \infty \neq y \text{ or } x \in y + \mathcal{D}; \\ -1, & \text{if } x \neq \infty = y \text{ or } y \in x + \mathcal{D}. \end{cases}
$$

す 伊 ト す ヨ ト す

Skew Hadamard Matrices

A *Hadamard matrix of order n* is an *n* × *n* matrix *H* with entries \pm 1 satisfying $HH^T = nI$. Hadamard matrices H_1, H_2 are *equivalent* if $MH_1N = H_2$ for some ± 1 -monomial matrices M, N.

Ding and Yuan (2006) constructed a family of difference sets in the additive group of \mathbb{F}_q , $q=3^{2r+1}$ given by

$$
\mathcal{D}=\{x^{10}-x^6-x^2\,:\,0\neq x\in\mathbb{F}_q\}
$$

resulting in a family of skew Hadamard matrices of order $q + 1$ given by $H = \big[h_{\mathsf{x}\mathsf{y}} \big]_{\mathsf{x},\mathsf{y} \in \mathbb{F}_q \cup \{ \infty \}}$ where

$$
h_{xy} = \begin{cases} 1, & \text{if } x = y; \\ 1, & \text{if } x = \infty \neq y \text{ or } x \in y + \mathcal{D}; \\ -1, & \text{if } x \neq \infty = y \text{ or } y \in x + \mathcal{D}. \end{cases}
$$

 $\langle \oplus \rangle$ + $\langle \oplus \rangle$ + \langle

Ding, Wang and Xiang (2007) constructed another infinite family of skew Hadamard matrices of the same order $q + 1$, $q = 3^{2r+1}$ from the difference sets

$$
\widetilde{\mathcal{D}} = \{x^{2\sigma+3} + \varepsilon x^{\sigma} - x : 0 \neq x \in \mathbb{F}_q\}, \sigma = 3^{r+1}, \varepsilon = \pm 1.
$$

Conjecturally, the resulting skew Hadamard matrices H coincide with the Ding-Yuan construction only for $q = 3$.

Ding, Wang and Xiang (2007) constructed another infinite family of skew Hadamard matrices of the same order $q + 1$, $q = 3^{2r+1}$ from the difference sets

$$
\widetilde{\mathcal{D}} = \{x^{2\sigma+3} + \varepsilon x^{\sigma} - x : 0 \neq x \in \mathbb{F}_q\}, \sigma = 3^{r+1}, \varepsilon = \pm 1.
$$

Conjecturally, the resulting skew Hadamard matrices H coincide with the Ding-Yuan construction only for $q = 3$.

DRGs Related to Generalized Preparata Codes

Let $q=2^{2t-1},\,\sigma=2^e$ where $\gcd(e,2t{-}1)=1.$ Consider the graph $\Gamma_{\alpha,\sigma}$ with vertex set $\mathbb{F}_q \times \mathbb{F}_2 \times \mathbb{F}_q$ and adjacency

 $(a, i, \alpha) \sim (b, j, \beta) \Leftrightarrow \alpha + \beta = a^{\sigma}b + ab^{\sigma} + (i+j)(a^{\sigma+1}+b^{\sigma+1}).$

(a) Γ*q*,σ *is an antipodal distance regular graph of diameter 3, a q*-fold cover of K_{2q} *via* $(a, i, \alpha) \mapsto (a, i)$.

(b)
$$
\Gamma_{q,\sigma} \cong \Gamma_{q,\sigma'} \Leftrightarrow \sigma' = \sigma^{\pm 1}
$$
, resulting in $\frac{1}{2}\phi(2t-1)$
nonisomorphic such covers.

The full automorphism group of Γ*q*,σ is determined, together with the nonisomorphism result (b), by using walks on the graph Γ*q*,σ to construct binary codes; then showing that these are generalized Preparata codes; and finally using Kantor's determination of automorphisms/isomorphisms of generalized Preparata codes (1983). $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

DRGs Related to Generalized Preparata Codes

Let $q=2^{2t-1},\,\sigma=2^e$ where $\gcd(e,2t{-}1)=1.$ Consider the graph $\Gamma_{\alpha,\sigma}$ with vertex set $\mathbb{F}_q \times \mathbb{F}_2 \times \mathbb{F}_q$ and adjacency

 $(a, i, \alpha) \sim (b, j, \beta) \Leftrightarrow \alpha + \beta = a^{\sigma}b + ab^{\sigma} + (i+j)(a^{\sigma+1}+b^{\sigma+1}).$

Theorem (de Caen, Mathon, M. (1995))

(a) Γ*q*,σ *is an antipodal distance regular graph of diameter 3, a q*-fold cover of K_{2q} *via* $(a, i, \alpha) \mapsto (a, i)$.

(b)
$$
\Gamma_{q,\sigma} \cong \Gamma_{q,\sigma'} \Leftrightarrow \sigma' = \sigma^{\pm 1}
$$
, resulting in $\frac{1}{2}\phi(2t-1)$
nonisomorphic such covers.

The full automorphism group of Γ*q*,σ is determined, together with the nonisomorphism result (b), by using walks on the graph Γ*q*,σ to construct binary codes; then showing that these are generalized Preparata codes; and finally using Kantor's determination of automorphisms/isomorphisms of generalized Preparata codes (1983). **K ロ ト K 個 ト K 差 ト K 差 ト**

DRGs Related to Generalized Preparata Codes

Let $q=2^{2t-1},\,\sigma=2^e$ where $\gcd(e,2t{-}1)=1.$ Consider the graph $\Gamma_{\alpha,\sigma}$ with vertex set $\mathbb{F}_q \times \mathbb{F}_2 \times \mathbb{F}_q$ and adjacency

 $(a, i, \alpha) \sim (b, j, \beta) \Leftrightarrow \alpha + \beta = a^{\sigma}b + ab^{\sigma} + (i+j)(a^{\sigma+1}+b^{\sigma+1}).$

Theorem (de Caen, Mathon, M. (1995))

(a) Γ*q*,σ *is an antipodal distance regular graph of diameter 3, a q*-fold cover of K_{2q} *via* $(a, i, \alpha) \mapsto (a, i)$.

(b)
$$
\Gamma_{q,\sigma} \cong \Gamma_{q,\sigma'} \Leftrightarrow \sigma' = \sigma^{\pm 1}
$$
, resulting in $\frac{1}{2}\phi(2t-1)$
nonisomorphic such covers.

The full automorphism group of Γ*q*,σ is determined, together with the nonisomorphism result (b), by using walks on the graph Γ*q*,σ to construct binary codes; then showing that these are generalized Preparata codes; and finally using Kantor's determination of automorphisms/isomorphisms of generalized Preparata codes (1983). 4 ロ } 4 6 } 4 3 } 4

Thank You!

G. Eric Moorhouse [Isomorphism Testing](#page-0-0)