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Isomorphism Invariants

Let C be a category.

An isomorphism invariant on C is a map f taking objects C € C
to objects f(C) € D (for some category D) such that

C1 = Cg = f(C1) = f(Cg)
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Isomorphism Invariants

Let C be a category.

An isomorphism invariant on C is a map f taking objects C € C
to objects f(C) € D (for some category D) such that

C1 = CQ = f(C1) = f(Cg)

f is a complete isomorphism invariant if
Ci 2 Co & f(Cr) =1f(Cy).
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Isomorphism Invariants

Let C be a category.

An isomorphism invariant on C is a map f taking objects C € C
to objects f(C) € D (for some category D) such that

C1 = Cg = f(C1) = f(Cg)
f is a complete isomorphism invariant if
Ci 2 Co & f(Cr) =1f(Cy).

In order for f to be useful,
@ f should be efficiently computable; and

@ isomorphism should be more readily testable in D than in
C.

o
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Isomorphism Invariants

Let C be a category.

An isomorphism invariant on C is a map f taking objects C € C
to objects f(C) € D (for some category D) such that

C1 = Cg = f(C1) = f(Cg)
f is a complete isomorphism invariant if
Ci 2 Co & f(Cr) =1f(Cy).

In order for f to be useful,
@ f should be efficiently computable; and

@ isomorphism should be more readily testable in D than in
C.

The map f is not usually functorial. But. .. g

G. Eric Moorhouse Isomorphism Testing



A loop is a set L with a binary operation satisfying
@ There exists 1 € L satisfying 1x = x1 = x for all x € L; and

@ For all a € L, both of the maps x — ax and x — xa are
bijective on L.
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A loop is a set L with a binary operation satisfying
@ There exists 1 € L satisfying 1x = x1 = x for all x € L; and
@ For all a € L, both of the maps x — ax and x — xa are

bijective on L.
Bol identity Moufang identity associativity
(xy)2)y =x((y2)y) x(y(2y))=((xy)2)y (xy)z=x(y2)

(group)
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Classification of Bol loops of small order:

n | #groups fﬂgﬁgﬁé loops ggrﬁ;%%rs tIgct)zlillcq),;ﬁops
8 5 0 6 11

12 5 1 3 8

15 1 0 2 3

16 14 5 2038* 2052

All Bol loops of orders n < 16 not appearing in this table are
associative (i.e. groups).

(*) Classification of Bol loops of order 16 due to M. (2002). ﬁ
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Given aloop L = {g1=1, g0, 03, ... ,gn}, define a graph I'(L)
having n? + 3n vertices

Cell;, Row;, i, Entrye (i,j,k=1,2,...,n)

where vertex Cell; is joined to vertices Row;, j, Entryy
whenever g;g; = gk-
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Given aloop L = {g1=1, g0, 03, ... ,gn}, define a graph I'(L)
having n? + 3n vertices

Cell;, Row;, i, Entrye (i,j,k=1,2,...,n)

where vertex Cell; is joined to vertices Row;, j, Entryy
whenever g;g; = gk-

Regard I'(L) as a graph with 4 colours of vertices; and graph
morphisms are required to preserve the vertex colouring. Then
(L) is a complete isomorphism invariant of L.
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Given aloop L = {g1=1, g0, 03, ... ,gn}, define a graph I'(L)
having n? + 3n vertices

Cell;, Row;, i, Entrye (i,j,k=1,2,...,n)

where vertex Cell; is joined to vertices Row;, j, Entryy
whenever g;g; = gk-

Regard I'(L) as a graph with 4 colours of vertices; and graph
morphisms are required to preserve the vertex colouring. Then
(L) is a complete isomorphism invariant of L.

Better yet, add three more colours: one each for
Row, 1, Entry;.

Even better: g
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Use two shades of red for Row;, according as row i is an even
or odd permutation of L, i.e. according to the parity of the
permutation g — g;g.
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Use two shades of red for Row;, according as row i is an even
or odd permutation of L, i.e. according to the parity of the
permutation g — g;g.

Use for Col;, according as column j is an
even or odd permutation of L, i.e. according to the parity of the
permutation g — gg;.
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Use two shades of red for Row;, according as row i is an even
or odd permutation of L, i.e. according to the parity of the
permutation g — g;g.

Use for Col;, according as column j is an
even or odd permutation of L, i.e. according to the parity of the
permutation g — gg;.

Use two shades of brown for Entryy, according to the parity of
permutation x — y defined by xy = g.
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Use two shades of red for Row;, according as row i is an even
or odd permutation of L, i.e. according to the parity of the
permutation g — g;g.

Use for Col;, according as column j is an
even or odd permutation of L, i.e. according to the parity of the
permutation g — gg;.

Use two shades of brown for Entryy, according to the parity of
permutation x — y defined by xy = g.

Now (L) is a complete isomorphism invariant, taken to be in
the category of 10-coloured graphs.
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Two-Graphs and Skew Two-Graphs

Let X be a set, and (%) the collection of all k-subsets of X.

o
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Two-Graphs and Skew Two-Graphs

Let X be a set, and (%) the collection of all k-subsets of X.

A two-graph on X is a subset A C (g() such that every 4-subset

S C X contains an even number (i.e. 0, 2 or 4) triples in A.
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Two-Graphs and Skew Two-Graphs

Let X be a set, and (%) the collection of all k-subsets of X.

A two-graph on X is a subset A C (g() such that every 4-subset
S C X contains an even number (i.e. 0, 2 or 4) triples in A.

The degree of a pair {x,y} € (%) is the number of triples in A
containing {x, y}.
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Two-Graphs and Skew Two-Graphs

Let X be a set, and (%) the collection of all k-subsets of X.

A two-graph on X is a subset A C (g() such that every 4-subset

S C X contains an even number (i.e. 0, 2 or 4) triples in A.

The degree of a pair {x,y} € (%) is the number of triples in A
containing {x, y}. The degree sequence of A is the multiset of
degrees of pairs in X.
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A two-graph on X is a subset A C (g() such that every 4-subset

S C X contains an even number (i.e. 0, 2 or 4) triples in A.

The degree of a pair {x,y} € (%) is the number of triples in A
containing {x, y}. The degree sequence of A is the multiset of
degrees of pairs in X. It is an isomorphism invariant of A.
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Two-Graphs and Skew Two-Graphs

Let X be a set, and (%) the collection of all k-subsets of X.

A two-graph on X is a subset A C (g() such that every 4-subset

S C X contains an even number (i.e. 0, 2 or 4) triples in A.
The degree of a pair {x,y} € (%) is the number of triples in A
containing {x, y}. The degree sequence of A is the multiset of
degrees of pairs in X. It is an isomorphism invariant of A.

Let Altz X the collection of all 3-cycles of X.
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Two-Graphs and Skew Two-Graphs

Let X be a set, and (%) the collection of all k-subsets of X.

A two-graph on X is a subset A C (g() such that every 4-subset

S C X contains an even number (i.e. 0, 2 or 4) triples in A.

The degree of a pair {x,y} € (%) is the number of triples in A
containing {x, y}. The degree sequence of A is the multiset of
degrees of pairs in X. It is an isomorphism invariant of A.

Let Alt; X the collection of all 3-cycles of X. A skew two-graph
on X is a subset V C Altz X such that for every 4-subset
{x,y,z,w} C X, an even number (i.e. 0, 2 or 4) of the 3-cycles

(xyz), (xzw), (xwy), (ywz)

arein V.
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Spread Sets/Translation Planes

A spread set in GLy(q) is a set of g™+1 matrices
Y = {My, My, Mo, ... Mg}

such that M; — M; is invertible whenever j # .
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Spread Sets/Translation Planes

A spread set in GLy(q) is a set of g™+1 matrices
Y = {My, My, Mo, ... Mg}
such that M; — M; is invertible whenever j # .

If " =1 mod 4, then X yields an invariant two-graph A(X) on
{0,1,2,...,g"} consisting of those triples {/,j, k} such that

det((M; — M;)(M; — Mi)(Mx — M;)) is a square in Fg.
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Spread Sets/Translation Planes

A spread set in GLy(q) is a set of g™+1 matrices
Y = {My, My, Mo, ... Mg}
such that M; — M; is invertible whenever j # .

If " =1 mod 4, then X yields an invariant two-graph A(X) on
{0,1,2,...,g"} consisting of those triples {/,j, k} such that

det((M; — M;)(M; — Mi)(Mx — M;)) is a square in Fg.

The degree sequence of A(X) is an isomorphism invariant of
the translation plane associated to ¥. It is the best practical
isomorphism invariant known for spreads; but it does not easily
adapt to general theoretical results.
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Spread Sets/Translation Planes

A spread set in GLy(q) is a set of g"+1 matrices
Y ={My, Mi, My, ... Mg}
such that M; — M; is invertible whenever i # j.

If " = 3 mod 4, then X yields an invariant skew two-graph
V(X) consisting of those 3-cycles (i k) such that

det((M; — M;)(M; — Mi)(Mk — M,)) is a square in Fg.
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Spread Sets/Translation Planes

A spread set in GLy(q) is a set of g"+1 matrices
Y ={My, Mi, My, ... Mg}
such that M; — M; is invertible whenever i # j.

If " = 3 mod 4, then X yields an invariant skew two-graph
V(X) consisting of those 3-cycles (i k) such that

det((M; — M;)(M; — Mi)(Mk — M,)) is a square in Fg.

This is an isomorphism invariant of the associated translation
plane; but a less useful one.
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Spread Sets/Translation Planes

A spread set in GLy(q) is a set of g"+1 matrices
Y ={My, Mi, My, ... Mg}
such that M; — M; is invertible whenever i # j.

If " = 3 mod 4, then X yields an invariant skew two-graph
V(X) consisting of those 3-cycles (i k) such that

det((M; — M;)(M; — Mi)(Mk — M,)) is a square in Fg.

This is an isomorphism invariant of the associated translation
plane; but a less useful one.

There exist non-isomorphic (and non-polar) translation planes
with the same skew two-graph. g
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Spread Sets/Translation Planes

A spread set in GLy(q) is a set of g"+1 matrices
Y ={My, Mi, My, ... Mg}
such that M; — M; is invertible whenever i # j.

If " = 3 mod 4, then X yields an invariant skew two-graph
V(X) consisting of those 3-cycles (i k) such that

det((M; — M;)(M; — Mi)(Mk — M,)) is a square in Fg.

This is an isomorphism invariant of the associated translation
plane; but a less useful one.

There exist non-isomorphic (and non-polar) translation planes
with the same skew two-graph. Moreover, no information about g
V(X) is provided by degree sequences.
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Affine Planes (Conway’s invariant)

Let A be an affine plane of order n > 2, with a distinguished
point O. We describe an invariant of the pair (A, O). (This may
be adapted to an invariant of A or of a projective plane.)
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Affine Planes (Conway’s invariant)

Let A be an affine plane of order n > 2, with a distinguished
point O. We describe an invariant of the pair (A, O). (This may
be adapted to an invariant of A or of a projective plane.)

4i

Let 4o, 01, 0o, ..., ¢, be the lines through O. Lines parallel to ¢;
define a bijection on points a/’fk : /j — Lx. We obtain a two-graph
A(A,O)on {0,1,2,...,n} consisting of those triples {i,j, k} g
such that the permutation oJk o ajk o o— € Sym/; is odd.
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Consider a finite orthogonal space of type O;,(q) with
associated bilinear form B. An ovoid is a set O consisting of
q"~'+1 singular points, no two of which are perpendicular with
respect to B.

o
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Consider a finite orthogonal space of type O;,(q) with
associated bilinear form B. An ovoid is a set O consisting of
q"~'+1 singular points, no two of which are perpendicular with
respect to B.

Assume q is odd. The triples of points (u), (v), (w) in O such
that
B(u,v)B(v,w)B(w,u) is a square in Fq

form an invariant two-graph A(O).
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Consider a finite orthogonal space of type O;,(q) with
associated bilinear form B. An ovoid is a set O consisting of
q"~'+1 singular points, no two of which are perpendicular with
respect to B.

Assume q is odd. The triples of points (u), (v), (w) in O such
that
B(u,v)B(v,w)B(w,u) is a square in Fq

form an invariant two-graph A(O).

In OF (q), A(O) coincides with the invariant of the spread set in
GL»(q) associated to O by the Klein correspondence.

o
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The invariant A(O), or its degree sequence, is the best
available invariant for ovoids. It is extremely effective at
distinguishing nonisomorphic ovoids, or finding explicit
isomorphisms when there is one. But:

o
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The invariant A(O), or its degree sequence, is the best
available invariant for ovoids. It is extremely effective at
distinguishing nonisomorphic ovoids, or finding explicit
isomorphisms when there is one. But:

Conway, Kleidman and Wilson (1988) showed that there is at
least one ovoid in O (p) for every prime p.
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The invariant A(O), or its degree sequence, is the best
available invariant for ovoids. It is extremely effective at
distinguishing nonisomorphic ovoids, or finding explicit
isomorphisms when there is one. But:

Conway, Kleidman and Wilson (1988) showed that there is at
least one ovoid in O (p) for every prime p.

M. (1993) found additional families of ovoids in OF (p) the
number of which seems to — oo as p — oo. This is an open
question which our invariants seem unsuited to resolve.

o
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Skew Hadamard Matrices

A Hadamard matrix of order nis an n x n matrix H with entries
+1 satisfying HH™ = nl. Hadamard matrices H;, H, are
equivalent if MH{N = H> for some £1-monomial matrices M, N.

o
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Skew Hadamard Matrices

A Hadamard matrix of order nis an n x n matrix H with entries
+1 satisfying HH™ = nl. Hadamard matrices H;, H, are
equivalent if MH{N = H> for some £1-monomial matrices M, N.

Ding and Yuan (2006) constructed a family of difference sets in
the additive group of Fq, g = 32"+ given by

D={x""—x% - x2.0#£xcPFy}

resulting in a family of skew Hadamard matrices of order g + 1

given by H = [hXY]x,yquu{oo} where
1, if x =y,
hy =41, ifx=00#y or xey+D;
—1, ifx#oco=y or yex+D. ﬁ
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Skew Hadamard Matrices

Ding, Wang and Xiang (2007) constructed another infinite
family of skew Hadamard matrices of the same order g + 1,
g = 32t from the difference sets

D={x?" pex” —x: 0£x€Fg}, 0 =3"" c=+1.

o
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Skew Hadamard Matrices

Ding, Wang and Xiang (2007) constructed another infinite
family of skew Hadamard matrices of the same order g + 1,
g = 32t from the difference sets

D={x?" pex” —x: 0£x€Fg}, 0 =3"" c=+1.

Conjecturally, the resulting skew Hadamard matrices H
coincide with the Ding-Yuan construction only for g = 3.
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DRGs Related to Generalized Preparata Codes

Let g = 221-1, o = 2° where gcd(e, 2t—1) = 1. Consider the
graph Iy, with vertex set Fq x Fo x Fgq and adjacency

(a,i,0) ~ (b,),8) & a+B=ab+ab” + (i+j)(@ " +b7").

o
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DRGs Related to Generalized Preparata Codes

Let g = 221-1, o = 2° where gcd(e, 2t—1) = 1. Consider the
graph Iy, with vertex set Fq x Fo x Fgq and adjacency

(a,i,0) ~ (b,),8) & a+B=ab+ab” + (i+j)(@ " +b7").

Theorem (de Caen, Mathon, M. (1995))

(a) Tq. is an antipodal distance regular graph of diameter 3,
a q-fold cover of Kyq via (a, i, ) — (&, f).

(b) Tgo2Tq. & o =0, resulting in }¢(2t—1)
nonisomorphic such covers.
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DRGs Related to Generalized Preparata Codes

Let g = 221-1, o = 2° where gcd(e, 2t—1) = 1. Consider the
graph Iy, with vertex set Fq x Fo x Fgq and adjacency

(a,i,0) ~ (b,),8) & a+B=ab+ab” + (i+j)(@ " +b7").

Theorem (de Caen, Mathon, M. (1995))

(a) Tq. is an antipodal distance regular graph of diameter 3,
a q-fold cover of Kyq via (a, i, ) — (&, f).

(b) Tgo2Tq. & o =0, resulting in }¢(2t—1)
nonisomorphic such covers.

The full automorphism group of 'y , is determined, together

with the nonisomorphism result (b), by using walks on the

graph Iy, to construct binary codes; then showing that these

are generalized Preparata codes; and finally using Kantor’s d.
determination of automorphisms/isomorphisms of generalized
Preparata codes (1983).
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Thank You!

We interpret visual objects
based on our own experience
and memories,

= e o s B ol

Aaest muwnd I

CmED -

Questions?
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