Some Remarks on Isomorphism Testing

G. Eric Moorhouse

Department of Mathematics University of Wyoming

RMAC Seminar—6 March 2015

< 🗇 🕨

An *isomorphism invariant* on C is a map f taking objects $C \in C$ to objects $f(C) \in D$ (for some category D) such that

$$C_1 \cong C_2 \Rightarrow f(C_1) \cong f(C_2).$$

f is a complete isomorphism invariant if

 $C_1 \cong C_2 \Leftrightarrow f(C_1) \cong f(C_2).$

In order for *f* to be useful,

- f should be efficiently computable; and
- isomorphism should be more readily testable in ${\cal D}$ than in ${\cal C}.$

The map *f* is not usually functorial. But...

< 🗇 > < 🖻

An *isomorphism invariant* on C is a map f taking objects $C \in C$ to objects $f(C) \in D$ (for some category D) such that

$$C_1 \cong C_2 \Rightarrow f(C_1) \cong f(C_2).$$

f is a complete isomorphism invariant if

$$C_1 \cong C_2 \Leftrightarrow f(C_1) \cong f(C_2).$$

In order for *f* to be useful,

- f should be efficiently computable; and
- isomorphism should be more readily testable in ${\cal D}$ than in ${\cal C}.$

The map *f* is not usually functorial. But...

An *isomorphism invariant* on C is a map f taking objects $C \in C$ to objects $f(C) \in D$ (for some category D) such that

$$C_1 \cong C_2 \Rightarrow f(C_1) \cong f(C_2).$$

f is a complete isomorphism invariant if

$$C_1 \cong C_2 \Leftrightarrow f(C_1) \cong f(C_2).$$

In order for *f* to be useful,

- f should be efficiently computable; and
- isomorphism should be more readily testable in \mathcal{D} than in \mathcal{C} .

The map *f* is not usually functorial. But...

An *isomorphism invariant* on C is a map f taking objects $C \in C$ to objects $f(C) \in D$ (for some category D) such that

$$C_1 \cong C_2 \Rightarrow f(C_1) \cong f(C_2).$$

f is a complete isomorphism invariant if

$$C_1 \cong C_2 \Leftrightarrow f(C_1) \cong f(C_2).$$

In order for *f* to be useful,

- f should be efficiently computable; and
- isomorphism should be more readily testable in \mathcal{D} than in \mathcal{C} .

The map *f* is not usually functorial. But...

A *loop* is a set *L* with a binary operation satisfying

- There exists $1 \in L$ satisfying 1x = x1 = x for all $x \in L$; and
- For all *a* ∈ *L*, both of the maps *x* → *ax* and *x* → *xa* are bijective on *L*.

э

ヘロト 人間 ト ヘヨト ヘヨト

A *loop* is a set *L* with a binary operation satisfying

- There exists $1 \in L$ satisfying 1x = x1 = x for all $x \in L$; and
- For all *a* ∈ *L*, both of the maps *x* → *ax* and *x* → *xa* are bijective on *L*.

Classification of Bol loops of small order:

n	# groups	# proper Moufang loops	# proper <mark>Bol</mark> loops	<mark>total</mark> # Bol loops
8	5	0	6	11
12	5	1	3	8
15	1	0	2	3
16	14	5	2038*	2052*

All Bol loops of orders $n \leq 16$ not appearing in this table are associative (i.e. groups).

(*) Classification of Bol loops of order 16 due to M. (2002).

Loops

Given a loop $L = \{g_1=1, g_2, g_3, \dots, g_n\}$, define a graph $\Gamma(L)$ having $n^2 + 3n$ vertices

Cell_{*ij*}, **Row**_{*i*}, **Col**_{*j*}, **Entry**_{*k*} (*i*, *j*, *k* = 1, 2, ..., *n*)

where vertex **Cell**_{*ij*} is joined to vertices **Row**_{*i*}, **Col**_{*j*}, **Entry**_{*k*} whenever $g_ig_j = g_k$.

Regard $\Gamma(L)$ as a graph with 4 colours of vertices; and graph morphisms are required to preserve the vertex colouring. Then $\Gamma(L)$ is a complete isomorphism invariant of *L*.

Better yet, add three more colours: one each for **Row**₁, **Col**₁, **Entry**₁.

Even better:

ヘロト ヘワト ヘビト ヘビト

Loops

Given a loop $L = \{g_1=1, g_2, g_3, \dots, g_n\}$, define a graph $\Gamma(L)$ having $n^2 + 3n$ vertices

Cell_{*ij*}, **Row**_{*i*}, **Col**_{*j*}, **Entry**_{*k*} (*i*, *j*, *k* = 1, 2, ..., *n*)

where vertex **Cell**_{*ij*} is joined to vertices **Row**_{*i*}, **Col**_{*j*}, **Entry**_{*k*} whenever $g_ig_j = g_k$.

Regard $\Gamma(L)$ as a graph with 4 colours of vertices; and graph morphisms are required to preserve the vertex colouring. Then $\Gamma(L)$ is a complete isomorphism invariant of *L*.

Better yet, add three more colours: one each for **Row**₁, **Col**₁, **Entry**₁.

Even better:

・ロト ・回 ト ・ヨト ・ヨト

Loops

Given a loop $L = \{g_1=1, g_2, g_3, \dots, g_n\}$, define a graph $\Gamma(L)$ having $n^2 + 3n$ vertices

Cell_{*ij*}, **Row**_{*i*}, **Col**_{*j*}, **Entry**_{*k*} (*i*, *j*, *k* = 1, 2, ..., *n*)

where vertex **Cell**_{*ij*} is joined to vertices **Row**_{*i*}, **Col**_{*j*}, **Entry**_{*k*} whenever $g_ig_j = g_k$.

Regard $\Gamma(L)$ as a graph with 4 colours of vertices; and graph morphisms are required to preserve the vertex colouring. Then $\Gamma(L)$ is a complete isomorphism invariant of *L*.

Better yet, add three more colours: one each for **Row**₁, **Col**₁, **Entry**₁.

Even better:

ヘロン 人間 とくほど くほど

Use two shades of red for **Row**_{*i*}, according as row *i* is an even or odd permutation of *L*, i.e. according to the parity of the permutation $g \mapsto g_i g$.

Use two shades of green for Col_j , according as column *j* is an even or odd permutation of *L*, i.e. according to the parity of the permutation $g \mapsto gg_j$.

Use two shades of brown for **Entry**_k, according to the parity of permutation $x \mapsto y$ defined by $xy = g_k$.

Now $\Gamma(L)$ is a complete isomorphism invariant, taken to be in the category of 10-coloured graphs.

A B > A B > A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Use two shades of red for **Row**_{*i*}, according as row *i* is an even or odd permutation of *L*, i.e. according to the parity of the permutation $g \mapsto g_i g$.

Use two shades of green for Col_j , according as column *j* is an even or odd permutation of *L*, i.e. according to the parity of the permutation $g \mapsto gg_j$.

Use two shades of brown for **Entry**_k, according to the parity of permutation $x \mapsto y$ defined by $xy = g_k$.

Now $\Gamma(L)$ is a complete isomorphism invariant, taken to be in the category of 10-coloured graphs.

・ロン ・回 と ・ 回 と ・

Use two shades of red for **Row**_{*i*}, according as row *i* is an even or odd permutation of *L*, i.e. according to the parity of the permutation $g \mapsto g_i g$.

Use two shades of green for Col_j , according as column *j* is an even or odd permutation of *L*, i.e. according to the parity of the permutation $g \mapsto gg_j$.

Use two shades of brown for **Entry**_k, according to the parity of permutation $x \mapsto y$ defined by $xy = g_k$.

Now $\Gamma(L)$ is a complete isomorphism invariant, taken to be in the category of 10-coloured graphs.

・ロン ・回 と ・ 回 と ・

Use two shades of red for **Row**_{*i*}, according as row *i* is an even or odd permutation of *L*, i.e. according to the parity of the permutation $g \mapsto g_i g$.

Use two shades of green for Col_j , according as column *j* is an even or odd permutation of *L*, i.e. according to the parity of the permutation $g \mapsto gg_j$.

Use two shades of brown for **Entry**_k, according to the parity of permutation $x \mapsto y$ defined by $xy = g_k$.

Now $\Gamma(L)$ is a complete isomorphism invariant, taken to be in the category of 10-coloured graphs.

A B > A B > A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Let X be a set, and $\binom{X}{k}$ the collection of all k-subsets of X.

A *two-graph on X* is a subset $\Delta \subseteq \binom{X}{3}$ such that every 4-subset $S \subseteq X$ contains an even number (i.e. 0, 2 or 4) triples in Δ .

The *degree* of a pair $\{x, y\} \in {\binom{X}{2}}$ is the number of triples in Δ containing $\{x, y\}$. The *degree sequence* of Δ is the multiset of degrees of pairs in *X*. It is an isomorphism invariant of Δ .

Let Alt₃ X the collection of all 3-cycles of X. A *skew two-graph* on X is a subset $\nabla \subseteq \text{Alt}_3 X$ such that for every 4-subset $\{x,y,z,w\} \subseteq X$, an even number (i.e. 0, 2 or 4) of the 3-cycles

(*xyz*), (*xzw*), (*xwy*), (*ywz*)

are in ∇ .

A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A

Let X be a set, and $\binom{X}{k}$ the collection of all k-subsets of X.

A *two-graph on X* is a subset $\Delta \subseteq \binom{X}{3}$ such that every 4-subset $S \subseteq X$ contains an even number (i.e. 0, 2 or 4) triples in Δ .

The *degree* of a pair $\{x, y\} \in {X \choose 2}$ is the number of triples in Δ containing $\{x, y\}$. The *degree sequence* of Δ is the multiset of degrees of pairs in *X*. It is an isomorphism invariant of Δ .

Let Alt₃ X the collection of all 3-cycles of X. A *skew two-graph* on X is a subset $\nabla \subseteq \text{Alt}_3 X$ such that for every 4-subset $\{x,y,z,w\} \subseteq X$, an even number (i.e. 0, 2 or 4) of the 3-cycles

(*xyz*), (*xzw*), (*xwy*), (*ywz*)

are in ∇ .

A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A

Let X be a set, and $\binom{X}{k}$ the collection of all k-subsets of X.

A *two-graph on X* is a subset $\Delta \subseteq \binom{X}{3}$ such that every 4-subset $S \subseteq X$ contains an even number (i.e. 0, 2 or 4) triples in Δ .

The *degree* of a pair $\{x, y\} \in {\binom{X}{2}}$ is the number of triples in Δ containing $\{x, y\}$. The *degree sequence* of Δ is the multiset of degrees of pairs in *X*. It is an isomorphism invariant of Δ .

Let Alt₃ X the collection of all 3-cycles of X. A *skew two-graph* on X is a subset $\nabla \subseteq \text{Alt}_3 X$ such that for every 4-subset $\{x,y,z,w\} \subseteq X$, an even number (i.e. 0, 2 or 4) of the 3-cycles

(*xyz*), (*xzw*), (*xwy*), (*ywz*)

are in ∇ .

・ロト ・ 『 ト ・ ヨ ト

Let X be a set, and $\binom{X}{k}$ the collection of all k-subsets of X.

A *two-graph on X* is a subset $\Delta \subseteq \binom{X}{3}$ such that every 4-subset $S \subseteq X$ contains an even number (i.e. 0, 2 or 4) triples in Δ .

The *degree* of a pair $\{x, y\} \in {X \choose 2}$ is the number of triples in Δ containing $\{x, y\}$. The *degree sequence* of Δ is the multiset of degrees of pairs in *X*. It is an isomorphism invariant of Δ .

Let Alt₃ X the collection of all 3-cycles of X. A *skew two-graph* on X is a subset $\nabla \subseteq \text{Alt}_3 X$ such that for every 4-subset $\{x,y,z,w\} \subseteq X$, an even number (i.e. 0, 2 or 4) of the 3-cycles

(*xyz*), (*xzw*), (*xwy*), (*ywz*)

are in ∇ .

・ロン ・日 ・ ・ 日 と

Let X be a set, and $\binom{X}{k}$ the collection of all k-subsets of X.

A *two-graph on X* is a subset $\Delta \subseteq \binom{X}{3}$ such that every 4-subset $S \subseteq X$ contains an even number (i.e. 0, 2 or 4) triples in Δ .

The *degree* of a pair $\{x, y\} \in {X \choose 2}$ is the number of triples in Δ containing $\{x, y\}$. The *degree sequence* of Δ is the multiset of degrees of pairs in *X*. It is an isomorphism invariant of Δ .

Let Alt₃ X the collection of all 3-cycles of X. A *skew two-graph* on X is a subset $\nabla \subseteq \text{Alt}_3 X$ such that for every 4-subset $\{x,y,z,w\} \subseteq X$, an even number (i.e. 0, 2 or 4) of the 3-cycles

(*xyz*), (*xzw*), (*xwy*), (*ywz*)

are in ∇ .

ヘロン スロン スロンス

Let X be a set, and $\binom{X}{k}$ the collection of all k-subsets of X.

A *two-graph on X* is a subset $\Delta \subseteq \binom{X}{3}$ such that every 4-subset $S \subseteq X$ contains an even number (i.e. 0, 2 or 4) triples in Δ .

The *degree* of a pair $\{x, y\} \in {X \choose 2}$ is the number of triples in Δ containing $\{x, y\}$. The *degree sequence* of Δ is the multiset of degrees of pairs in *X*. It is an isomorphism invariant of Δ .

Let Alt₃ X the collection of all 3-cycles of X. A *skew two-graph* on X is a subset $\nabla \subseteq Alt_3 X$ such that for every 4-subset $\{x, y, z, w\} \subseteq X$, an even number (i.e. 0, 2 or 4) of the 3-cycles

(*xyz*), (*xzw*), (*xwy*), (*ywz*)

are in ∇ .

・ロ・・ 日本・ ・ 回 ・ ・

Let X be a set, and $\binom{X}{k}$ the collection of all k-subsets of X.

A *two-graph on X* is a subset $\Delta \subseteq \binom{X}{3}$ such that every 4-subset $S \subseteq X$ contains an even number (i.e. 0, 2 or 4) triples in Δ .

The *degree* of a pair $\{x, y\} \in {\binom{X}{2}}$ is the number of triples in Δ containing $\{x, y\}$. The *degree sequence* of Δ is the multiset of degrees of pairs in *X*. It is an isomorphism invariant of Δ .

Let Alt₃ X the collection of all 3-cycles of X. A *skew two-graph* on X is a subset $\nabla \subseteq \text{Alt}_3 X$ such that for every 4-subset $\{x, y, z, w\} \subseteq X$, an even number (i.e. 0, 2 or 4) of the 3-cycles

are in ∇ .

▶ ★ @ ▶ ★ ≧ ▶

A spread set in $GL_n(q)$ is a set of q^n+1 matrices

 $\Sigma = \{M_0, M_1, M_2, \ldots, M_{q^n}\}$

such that $M_i - M_i$ is invertible whenever $i \neq j$.

If $q^n \equiv 1 \mod 4$, then Σ yields an invariant two-graph $\Delta(\Sigma)$ on $\{0, 1, 2, \dots, q^n\}$ consisting of those triples $\{i, j, k\}$ such that

 $det((M_i - M_j)(M_j - M_k)(M_k - M_i))$ is a square in \mathbb{F}_q .

The degree sequence of $\Delta(\Sigma)$ is an isomorphism invariant of the translation plane associated to Σ . It is the best practical isomorphism invariant known for spreads; but it does not easily adapt to general theoretical results.

ヘロト ヘヨト ヘヨト ヘ

A spread set in $GL_n(q)$ is a set of q^n+1 matrices

$$\Sigma = \{M_0, M_1, M_2, \ldots, M_{q^n}\}$$

such that $M_i - M_j$ is invertible whenever $i \neq j$.

If $q^n \equiv 1 \mod 4$, then Σ yields an invariant two-graph $\Delta(\Sigma)$ on $\{0, 1, 2, ..., q^n\}$ consisting of those triples $\{i, j, k\}$ such that

 $det((M_i - M_j)(M_j - M_k)(M_k - M_i))$ is a square in \mathbb{F}_q .

The degree sequence of $\Delta(\Sigma)$ is an isomorphism invariant of the translation plane associated to Σ . It is the best practical isomorphism invariant known for spreads; but it does not easily adapt to general theoretical results.

・ロト ・ 日 ・ ・ 日 ・ ・ 日

A spread set in $GL_n(q)$ is a set of q^n+1 matrices

$$\Sigma = \{M_0, M_1, M_2, \ldots, M_{q^n}\}$$

such that $M_i - M_j$ is invertible whenever $i \neq j$.

If $q^n \equiv 1 \mod 4$, then Σ yields an invariant two-graph $\Delta(\Sigma)$ on $\{0, 1, 2, ..., q^n\}$ consisting of those triples $\{i, j, k\}$ such that

$$det((M_i - M_j)(M_j - M_k)(M_k - M_i))$$
 is a square in \mathbb{F}_q .

The degree sequence of $\Delta(\Sigma)$ is an isomorphism invariant of the translation plane associated to Σ . It is the best practical isomorphism invariant known for spreads; but it does not easily adapt to general theoretical results.

・ ・ 回 ・ ・ ヨ ・ ・

A spread set in $GL_n(q)$ is a set of q^n+1 matrices

$$\Sigma = \{M_0, M_1, M_2, \ldots, M_{q^n}\}$$

such that $M_i - M_j$ is invertible whenever $i \neq j$.

If $q^n \equiv 3 \mod 4$, then Σ yields an invariant skew two-graph $\nabla(\Sigma)$ consisting of those 3-cycles (ijk) such that

 $det((M_i - M_j)(M_j - M_k)(M_k - M_i))$ is a square in \mathbb{F}_q .

This is an isomorphism invariant of the associated translation plane; but a less useful one.

There exist non-isomorphic (and non-polar) translation planes with the same skew two-graph. Moreover, no information about $\nabla(\Sigma)$ is provided by degree sequences.

ヘロト ヘヨト ヘヨト ヘ

A spread set in $GL_n(q)$ is a set of q^n+1 matrices

$$\Sigma = \{M_0, M_1, M_2, \ldots, M_{q^n}\}$$

such that $M_i - M_j$ is invertible whenever $i \neq j$.

If $q^n \equiv 3 \mod 4$, then Σ yields an invariant skew two-graph $\nabla(\Sigma)$ consisting of those 3-cycles (ijk) such that

$$det((M_i - M_j)(M_j - M_k)(M_k - M_i))$$
 is a square in \mathbb{F}_q .

This is an isomorphism invariant of the associated translation plane; but a less useful one.

There exist non-isomorphic (and non-polar) translation planes with the same skew two-graph. Moreover, no information about $\nabla(\Sigma)$ is provided by degree sequences.

A spread set in $GL_n(q)$ is a set of q^n+1 matrices

$$\Sigma = \{M_0, M_1, M_2, \ldots, M_{q^n}\}$$

such that $M_i - M_j$ is invertible whenever $i \neq j$.

If $q^n \equiv 3 \mod 4$, then Σ yields an invariant skew two-graph $\nabla(\Sigma)$ consisting of those 3-cycles (ijk) such that

$$det((M_i - M_j)(M_j - M_k)(M_k - M_i))$$
 is a square in \mathbb{F}_q .

This is an isomorphism invariant of the associated translation plane; but a less useful one.

There exist non-isomorphic (and non-polar) translation planes with the same skew two-graph. Moreover, no information about $\nabla(\Sigma)$ is provided by degree sequences.

A spread set in $GL_n(q)$ is a set of q^n+1 matrices

$$\Sigma = \{M_0, M_1, M_2, \ldots, M_{q^n}\}$$

such that $M_i - M_j$ is invertible whenever $i \neq j$.

If $q^n \equiv 3 \mod 4$, then Σ yields an invariant skew two-graph $\nabla(\Sigma)$ consisting of those 3-cycles (ijk) such that

$$det((M_i - M_j)(M_j - M_k)(M_k - M_i))$$
 is a square in \mathbb{F}_q .

This is an isomorphism invariant of the associated translation plane; but a less useful one.

There exist non-isomorphic (and non-polar) translation planes with the same skew two-graph. Moreover, no information about $\nabla(\Sigma)$ is provided by degree sequences.

Affine Planes (Conway's invariant)

Let \mathcal{A} be an *affine plane of order* $n \ge 2$, with a distinguished point O. We describe an invariant of the pair (\mathcal{A}, O) . (This may be adapted to an invariant of \mathcal{A} or of a projective plane.)

Let $\ell_0, \ell_1, \ell_2, \ldots, \ell_n$ be the lines through *O*. Lines parallel to ℓ_i define a bijection on points $\sigma_{jk}^i : \ell_j \to \ell_k$. We obtain a two-graph $\Delta(\mathcal{A}, O)$ on $\{0, 1, 2, \ldots, n\}$ consisting of those triples $\{i, j, k\}$ such that the permutation $\sigma_{ki}^j \circ \sigma_{ik}^i \circ \sigma_{ik}^k \in Sym \, \ell_i$ is odd.

Affine Planes (Conway's invariant)

Let \mathcal{A} be an *affine plane of order* $n \ge 2$, with a distinguished point O. We describe an invariant of the pair (\mathcal{A}, O) . (This may be adapted to an invariant of \mathcal{A} or of a projective plane.)

Let $\ell_0, \ell_1, \ell_2, \ldots, \ell_n$ be the lines through *O*. Lines parallel to ℓ_i define a bijection on points $\sigma_{jk}^i : \ell_j \to \ell_k$. We obtain a two-graph $\Delta(\mathcal{A}, O)$ on $\{0, 1, 2, \ldots, n\}$ consisting of those triples $\{i, j, k\}$ such that the permutation $\sigma_{ki}^j \circ \sigma_{jk}^i \circ \sigma_{ij}^k \in Sym \, \ell_i$ is odd.

Ovoids

Consider a finite orthogonal space of type $O_{2n}^+(q)$ with associated bilinear form *B*. An *ovoid* is a set \mathcal{O} consisting of $q^{n-1}+1$ singular points, no two of which are perpendicular with respect to *B*.

Assume *q* is odd. The triples of points $\langle u \rangle$, $\langle v \rangle$, $\langle w \rangle$ in \mathcal{O} such that

B(u, v)B(v, w)B(w, u) is a square in \mathbb{F}_q

form an invariant two-graph $\Delta(\mathcal{O})$.

In $O_6^+(q)$, $\Delta(\mathcal{O})$ coincides with the invariant of the spread set in $GL_2(q)$ associated to \mathcal{O} by the Klein correspondence.

ヘロト ヘヨト ヘヨト ヘ

Consider a finite orthogonal space of type $O_{2n}^+(q)$ with associated bilinear form *B*. An *ovoid* is a set \mathcal{O} consisting of $q^{n-1}+1$ singular points, no two of which are perpendicular with respect to *B*.

Assume *q* is odd. The triples of points $\langle u \rangle$, $\langle v \rangle$, $\langle w \rangle$ in \mathcal{O} such that

B(u, v)B(v, w)B(w, u) is a square in \mathbb{F}_q

form an invariant two-graph $\Delta(\mathcal{O})$.

In $O_6^+(q)$, $\Delta(\mathcal{O})$ coincides with the invariant of the spread set in $GL_2(q)$ associated to \mathcal{O} by the Klein correspondence.

ヘロン 人間 とくほど くほど

Consider a finite orthogonal space of type $O_{2n}^+(q)$ with associated bilinear form *B*. An *ovoid* is a set \mathcal{O} consisting of $q^{n-1}+1$ singular points, no two of which are perpendicular with respect to *B*.

Assume *q* is odd. The triples of points $\langle u \rangle$, $\langle v \rangle$, $\langle w \rangle$ in \mathcal{O} such that

B(u, v)B(v, w)B(w, u) is a square in \mathbb{F}_q

form an invariant two-graph $\Delta(\mathcal{O})$.

In $O_6^+(q)$, $\Delta(\mathcal{O})$ coincides with the invariant of the spread set in $GL_2(q)$ associated to \mathcal{O} by the Klein correspondence.

ヘロト ヘヨト ヘヨト ヘ

The invariant $\Delta(\mathcal{O})$, or its degree sequence, is the best available invariant for ovoids. It is extremely effective at distinguishing nonisomorphic ovoids, or finding explicit isomorphisms when there is one. But:

Conway, Kleidman and Wilson (1988) showed that there is at least one ovoid in $O_8^+(p)$ for every prime *p*.

M. (1993) found additional families of ovoids in $O_8^+(p)$ the number of which seems to $\rightarrow \infty$ as $p \rightarrow \infty$. This is an open question which our invariants seem unsuited to resolve.

The invariant $\Delta(\mathcal{O})$, or its degree sequence, is the best available invariant for ovoids. It is extremely effective at distinguishing nonisomorphic ovoids, or finding explicit isomorphisms when there is one. But:

Conway, Kleidman and Wilson (1988) showed that there is at least one ovoid in $O_8^+(p)$ for every prime *p*.

M. (1993) found additional families of ovoids in $O_8^+(p)$ the number of which seems to $\rightarrow \infty$ as $p \rightarrow \infty$. This is an open question which our invariants seem unsuited to resolve.

A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A

The invariant $\Delta(\mathcal{O})$, or its degree sequence, is the best available invariant for ovoids. It is extremely effective at distinguishing nonisomorphic ovoids, or finding explicit isomorphisms when there is one. But:

Conway, Kleidman and Wilson (1988) showed that there is at least one ovoid in $O_8^+(p)$ for every prime *p*.

M. (1993) found additional families of ovoids in $O_8^+(p)$ the number of which seems to $\rightarrow \infty$ as $p \rightarrow \infty$. This is an open question which our invariants seem unsuited to resolve.

Skew Hadamard Matrices

A Hadamard matrix of order *n* is an $n \times n$ matrix *H* with entries ± 1 satisfying $HH^T = nI$. Hadamard matrices H_1, H_2 are equivalent if $MH_1N = H_2$ for some ± 1 -monomial matrices *M*, *N*.

Ding and Yuan (2006) constructed a family of difference sets in the additive group of \mathbb{F}_q , $q = 3^{2r+1}$ given by

$$\mathcal{D} = \{x^{10} - x^6 - x^2 : 0 \neq x \in \mathbb{F}_q\}$$

resulting in a family of skew Hadamard matrices of order q + 1 given by $H = [h_{xy}]_{x,y \in \mathbb{F}_q \cup \{\infty\}}$ where

$$h_{xy} = \begin{cases} 1, & \text{if } x = y; \\ 1, & \text{if } x = \infty \neq y \text{ or } x \in y + \mathcal{D}; \\ -1, & \text{if } x \neq \infty = y \text{ or } y \in x + \mathcal{D}. \end{cases}$$

A B > A B > A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Skew Hadamard Matrices

A Hadamard matrix of order *n* is an $n \times n$ matrix *H* with entries ± 1 satisfying $HH^T = nI$. Hadamard matrices H_1, H_2 are equivalent if $MH_1N = H_2$ for some ± 1 -monomial matrices *M*, *N*.

Ding and Yuan (2006) constructed a family of difference sets in the additive group of \mathbb{F}_q , $q = 3^{2r+1}$ given by

$$\mathcal{D} = \{x^{10} - x^6 - x^2 \, : \, 0 \neq x \in \mathbb{F}_q\}$$

resulting in a family of skew Hadamard matrices of order q + 1 given by $H = [h_{xy}]_{x,y \in \mathbb{F}_q \cup \{\infty\}}$ where

$$h_{xy} = \begin{cases} 1, & \text{if } x = y; \\ 1, & \text{if } x = \infty \neq y \text{ or } x \in y + \mathcal{D}; \\ -1, & \text{if } x \neq \infty = y \text{ or } y \in x + \mathcal{D}. \end{cases}$$

Ding, Wang and Xiang (2007) constructed another infinite family of skew Hadamard matrices of the same order q + 1, $q = 3^{2r+1}$ from the difference sets

$$\widetilde{\mathcal{D}} = \{ x^{2\sigma+3} + \varepsilon x^{\sigma} - x \, : \, \mathbf{0} \neq x \in \mathbb{F}_q \} \; , \; \sigma = \mathbf{3}^{r+1}, \; \varepsilon = \pm \mathbf{1}.$$

Conjecturally, the resulting skew Hadamard matrices H coincide with the Ding-Yuan construction only for q = 3.

Ding, Wang and Xiang (2007) constructed another infinite family of skew Hadamard matrices of the same order q + 1, $q = 3^{2r+1}$ from the difference sets

$$\widetilde{\mathcal{D}} = \{ x^{2\sigma+3} + \varepsilon x^{\sigma} - x \, : \, \mathbf{0} \neq x \in \mathbb{F}_q \} \; , \; \sigma = \mathbf{3}^{r+1}, \; \varepsilon = \pm \mathbf{1}.$$

Conjecturally, the resulting skew Hadamard matrices H coincide with the Ding-Yuan construction only for q = 3.

DRGs Related to Generalized Preparata Codes

Let $q = 2^{2t-1}$, $\sigma = 2^e$ where gcd(e, 2t-1) = 1. Consider the graph $\Gamma_{q,\sigma}$ with vertex set $\mathbb{F}_q \times \mathbb{F}_2 \times \mathbb{F}_q$ and adjacency

 $(a, i, \alpha) \sim (b, j, \beta) \Leftrightarrow \alpha + \beta = a^{\sigma}b + ab^{\sigma} + (i+j)(a^{\sigma+1}+b^{\sigma+1}).$

Theorem (de Caen, Mathon, M. (1995))

(a) $\Gamma_{q,\sigma}$ is an antipodal distance regular graph of diameter 3, a q-fold cover of K_{2q} via $(a, i, \alpha) \mapsto (a, i)$.

(b) $\Gamma_{q,\sigma} \cong \Gamma_{q,\sigma'} \Leftrightarrow \sigma' = \sigma^{\pm 1}$, resulting in $\frac{1}{2}\phi(2t-1)$ nonisomorphic such covers.

The full automorphism group of $\Gamma_{q,\sigma}$ is determined, together with the nonisomorphism result (b), by using walks on the graph $\Gamma_{q,\sigma}$ to construct binary codes; then showing that these are generalized Preparata codes; and finally using Kantor's determination of automorphisms/isomorphisms of generalized Preparata codes (1983).

DRGs Related to Generalized Preparata Codes

Let $q = 2^{2t-1}$, $\sigma = 2^e$ where gcd(e, 2t-1) = 1. Consider the graph $\Gamma_{q,\sigma}$ with vertex set $\mathbb{F}_q \times \mathbb{F}_2 \times \mathbb{F}_q$ and adjacency

 $(a, i, \alpha) \sim (b, j, \beta) \Leftrightarrow \alpha + \beta = a^{\sigma}b + ab^{\sigma} + (i+j)(a^{\sigma+1}+b^{\sigma+1}).$

Theorem (de Caen, Mathon, M. (1995))

(a) $\Gamma_{q,\sigma}$ is an antipodal distance regular graph of diameter 3, a q-fold cover of K_{2q} via $(a, i, \alpha) \mapsto (a, i)$.

(b)
$$\Gamma_{q,\sigma} \cong \Gamma_{q,\sigma'} \Leftrightarrow \sigma' = \sigma^{\pm 1}$$
, resulting in $\frac{1}{2}\phi(2t-1)$ nonisomorphic such covers.

The full automorphism group of $\Gamma_{q,\sigma}$ is determined, together with the nonisomorphism result (b), by using walks on the graph $\Gamma_{q,\sigma}$ to construct binary codes; then showing that these are generalized Preparata codes; and finally using Kantor's determination of automorphisms/isomorphisms of generalized Preparata codes (1983).

DRGs Related to Generalized Preparata Codes

Let $q = 2^{2t-1}$, $\sigma = 2^e$ where gcd(e, 2t-1) = 1. Consider the graph $\Gamma_{q,\sigma}$ with vertex set $\mathbb{F}_q \times \mathbb{F}_2 \times \mathbb{F}_q$ and adjacency

 $(a, i, \alpha) \sim (b, j, \beta) \Leftrightarrow \alpha + \beta = a^{\sigma}b + ab^{\sigma} + (i+j)(a^{\sigma+1}+b^{\sigma+1}).$

Theorem (de Caen, Mathon, M. (1995))

(a) $\Gamma_{q,\sigma}$ is an antipodal distance regular graph of diameter 3, a q-fold cover of K_{2q} via $(a, i, \alpha) \mapsto (a, i)$.

(b)
$$\Gamma_{q,\sigma} \cong \Gamma_{q,\sigma'} \Leftrightarrow \sigma' = \sigma^{\pm 1}$$
, resulting in $\frac{1}{2}\phi(2t-1)$ nonisomorphic such covers.

The full automorphism group of $\Gamma_{q,\sigma}$ is determined, together with the nonisomorphism result (b), by using walks on the graph $\Gamma_{q,\sigma}$ to construct binary codes; then showing that these are generalized Preparata codes; and finally using Kantor's determination of automorphisms/isomorphisms of generalized Preparata codes (1983).

Thank You!

ъ

ヘロト ヘアト ヘビト ヘビト

Questions?

G. Eric Moorhouse Isomorphism Testing