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Isomorphism Invariants

Let C be a category.

An isomorphism invariant on C is a map f taking objects C ∈ C
to objects f (C) ∈ D (for some category D) such that

C1
∼= C2 ⇒ f (C1) ∼= f (C2).

f is a complete isomorphism invariant if

C1
∼= C2 ⇔ f (C1) ∼= f (C2).

In order for f to be useful,
f should be efficiently computable; and
isomorphism should be more readily testable in D than in
C.

The map f is not usually functorial. But. . .
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Loops

A loop is a set L with a binary operation satisfying
There exists 1 ∈ L satisfying 1x = x1 = x for all x ∈ L; and
For all a ∈ L, both of the maps x 7→ ax and x 7→ xa are
bijective on L.

Bol identity
((xy)z)y =x((yz)y)

⇒ Moufang identity
x(y(zy))=((xy)z)y

⇒ associativity
(xy)z=x(yz)

(group)
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Loops

Classification of Bol loops of small order:

n # groups # proper
Moufang loops

# proper
Bol loops

total #
Bol loops

8 5 0 6 11

12 5 1 3 8

15 1 0 2 3

16 14 5 2038∗ 2052∗

All Bol loops of orders n 6 16 not appearing in this table are
associative (i.e. groups).

(*) Classification of Bol loops of order 16 due to M. (2002).
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Loops

Given a loop L = {g1=1, g2, g3, . . . ,gn}, define a graph Γ(L)
having n2 + 3n vertices

Cellij , Rowi , Colj , Entryk (i , j , k = 1,2, . . . ,n)

where vertex Cellij is joined to vertices Rowi , Colj , Entryk
whenever gigj = gk .

Regard Γ(L) as a graph with 4 colours of vertices; and graph
morphisms are required to preserve the vertex colouring. Then
Γ(L) is a complete isomorphism invariant of L.

Better yet, add three more colours: one each for
Row1, Col1, Entry1.

Even better:
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Loops

Use two shades of red for Rowi , according as row i is an even
or odd permutation of L, i.e. according to the parity of the
permutation g 7→ gig.

Use two shades of green for Colj , according as column j is an
even or odd permutation of L, i.e. according to the parity of the
permutation g 7→ ggj .

Use two shades of brown for Entryk , according to the parity of
permutation x 7→ y defined by xy = gk .

Now Γ(L) is a complete isomorphism invariant, taken to be in
the category of 10-coloured graphs.
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Two-Graphs and Skew Two-Graphs

Let X be a set, and
(X

k

)
the collection of all k -subsets of X .

A two-graph on X is a subset ∆ ⊆
(X

3

)
such that every 4-subset

S ⊆ X contains an even number (i.e. 0, 2 or 4) triples in ∆.

The degree of a pair {x , y} ∈
(X

2

)
is the number of triples in ∆

containing {x , y}. The degree sequence of ∆ is the multiset of
degrees of pairs in X . It is an isomorphism invariant of ∆.

Let Alt3 X the collection of all 3-cycles of X . A skew two-graph
on X is a subset ∇ ⊆ Alt3 X such that for every 4-subset
{x ,y ,z,w} ⊆ X , an even number (i.e. 0, 2 or 4) of the 3-cycles

(xyz), (xzw), (xwy), (ywz)

are in ∇.
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Spread Sets/Translation Planes

A spread set in GLn(q) is a set of qn+1 matrices

Σ = {M0,M1,M2, . . . ,Mqn}

such that Mi −Mj is invertible whenever i 6= j .

If qn ≡ 1 mod 4, then Σ yields an invariant two-graph ∆(Σ) on
{0,1,2, . . . ,qn} consisting of those triples {i , j , k} such that

det
(
(Mi −Mj)(Mj −Mk )(Mk −Mi)

)
is a square in Fq.

The degree sequence of ∆(Σ) is an isomorphism invariant of
the translation plane associated to Σ. It is the best practical
isomorphism invariant known for spreads; but it does not easily
adapt to general theoretical results.
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A spread set in GLn(q) is a set of qn+1 matrices
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(
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This is an isomorphism invariant of the associated translation
plane; but a less useful one.

There exist non-isomorphic (and non-polar) translation planes
with the same skew two-graph. Moreover, no information about
∇(Σ) is provided by degree sequences.
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Affine Planes (Conway’s invariant)

Let A be an affine plane of order n > 2, with a distinguished
point O. We describe an invariant of the pair (A,O). (This may
be adapted to an invariant of A or of a projective plane.)

Let `0, `1, `2, . . . , `n be the lines through O. Lines parallel to `i
define a bijection on points σi

jk : `j → `k . We obtain a two-graph
∆(A,O) on {0,1,2, . . . ,n} consisting of those triples {i , j , k}
such that the permutation σj

ki ◦σ
i
jk ◦σk

ij ∈ Sym `i is odd.
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Ovoids

Consider a finite orthogonal space of type O+
2n(q) with

associated bilinear form B. An ovoid is a set O consisting of
qn−1+1 singular points, no two of which are perpendicular with
respect to B.

Assume q is odd. The triples of points 〈u〉, 〈v〉, 〈w〉 in O such
that

B(u, v)B(v ,w)B(w ,u) is a square in Fq

form an invariant two-graph ∆(O).

In O+
6 (q), ∆(O) coincides with the invariant of the spread set in

GL2(q) associated to O by the Klein correspondence.
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Ovoids

The invariant ∆(O), or its degree sequence, is the best
available invariant for ovoids. It is extremely effective at
distinguishing nonisomorphic ovoids, or finding explicit
isomorphisms when there is one. But:

Conway, Kleidman and Wilson (1988) showed that there is at
least one ovoid in O+

8 (p) for every prime p.

M. (1993) found additional families of ovoids in O+
8 (p) the

number of which seems to→∞ as p →∞. This is an open
question which our invariants seem unsuited to resolve.
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Skew Hadamard Matrices

A Hadamard matrix of order n is an n × n matrix H with entries
±1 satisfying HHT = nI. Hadamard matrices H1,H2 are
equivalent if MH1N = H2 for some ±1-monomial matrices M,N.

Ding and Yuan (2006) constructed a family of difference sets in
the additive group of Fq, q = 32r+1 given by

D = {x10 − x6 − x2 : 0 6= x ∈ Fq}

resulting in a family of skew Hadamard matrices of order q + 1
given by H =

[
hxy
]

x ,y∈Fq∪{∞} where

hxy =


1, if x = y ;

1, if x =∞ 6= y or x ∈ y +D;

−1, if x 6=∞ = y or y ∈ x +D.
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Skew Hadamard Matrices

Ding, Wang and Xiang (2007) constructed another infinite
family of skew Hadamard matrices of the same order q + 1,
q = 32r+1 from the difference sets

D̃ = {x2σ+3 + εxσ − x : 0 6= x ∈ Fq} , σ = 3r+1, ε = ±1.

Conjecturally, the resulting skew Hadamard matrices H̃
coincide with the Ding-Yuan construction only for q = 3.
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DRGs Related to Generalized Preparata Codes

Let q = 22t−1, σ = 2e where gcd(e,2t−1) = 1. Consider the
graph Γq,σ with vertex set Fq × F2 × Fq and adjacency

(a, i , α) ∼ (b, j , β) ⇔ α + β = aσb + abσ + (i+j)(aσ+1+bσ+1).

Theorem (de Caen, Mathon, M. (1995))
(a) Γq,σ is an antipodal distance regular graph of diameter 3,
a q-fold cover of K2q via (a, i , α) 7→ (a, i).

(b) Γq,σ ∼= Γq,σ′ ⇔ σ′ = σ±1, resulting in 1
2φ(2t−1)

nonisomorphic such covers.

The full automorphism group of Γq,σ is determined, together
with the nonisomorphism result (b), by using walks on the
graph Γq,σ to construct binary codes; then showing that these
are generalized Preparata codes; and finally using Kantor’s
determination of automorphisms/isomorphisms of generalized
Preparata codes (1983).
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Thank You!

Questions?
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