The 2-transitive complex Hadamard matrices

G. Eric Moorhouse University of Wyoming A complex Hadamard matrix is a $v \times v$ matrix *H* whose entries are complex roots of unity, such that $HH^* = vI$. ($H^* =$ conjugatetranspose of *H*)

Ordinary Hadamard matrix: entries ± 1

Butson (1963) for *p*-th roots of 1, *p* prime

Turyn (1970): entries ± 1 , $\pm i$

Example 1:

$$
\begin{bmatrix} 1 & 1 & 1 \ 1 & \omega & \omega^2 \ 1 & \omega^2 & \omega \end{bmatrix}, \quad \omega = e^{2\pi i/3}.
$$

More generally, the character table of any finite abelian group.

Example 2:

$$
H_6 = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & \omega & \omega^2 & \omega^2 & \omega \\ 1 & \omega & 1 & \omega & \omega^2 & \omega^2 \\ 1 & \omega^2 & \omega & 1 & \omega & \omega^2 \\ 1 & \omega^2 & \omega^2 & \omega & 1 & \omega \\ 1 & \omega & \omega^2 & \omega^2 & \omega & 1 \end{bmatrix}, \quad \omega = e^{2\pi i/3}.
$$

 $H_6 \longleftrightarrow$ antipodal distance-regular graph of diameter 4 on 36 vertices (a triple cover of the complete bipartite graph $K_{6,6}$)

The Problem

Determine, to within 'equivalence', all complex Hadamard matrices *H* having an 'automorphism group' 2-transitive on the rows.

An *automorphism* of *H* is a pair (M_1, M_2) of monomial matrices (the nonzero entries of *Mi* are complex roots of 1, one per row/column) such that $M_1 H M_2^* = H$.

Let *G* be a finite group of automorphisms of *H*.

Suppose entries of *H* are *p*-th roots of unity, *p* prime. Then

H ←→ antipodal distance-regular graph Γ (a p-fold cover of $K_{v,v}$) with an automorphism of order *p* fixing every fibre.

 Γ distance-transitive \implies $\int G$ 2-transitive $Γ$ vertex-transitive \iff ^lon rows of *H*

Ivanov, Liebler, Penttila and Praeger (1997): Classified antipodal distance-transitive covers of *Kv,v*

Return to **Example:**

$$
H_6 = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & \omega & \omega^2 & \omega^2 & \omega \\ 1 & \omega & 1 & \omega & \omega^2 & \omega^2 \\ 1 & \omega^2 & \omega & 1 & \omega & \omega^2 \\ 1 & \omega^2 & \omega^2 & \omega & 1 & \omega \\ 1 & \omega & \omega^2 & \omega^2 & \omega & 1 \end{bmatrix}, \quad \omega = e^{2\pi i/3}.
$$

 $H_6 \longleftrightarrow \Gamma$, an antipodal distance-transitive of diameter 4 on 36 vertices.

The cover $\Gamma \to K_{6,6}$ (complete bipartite graph on $6 + 6$ vertices) has fibre size 3.

 $Aut(\Gamma) \cong 3Aut(Sym_6).$

 H_6 admits $G \cong 3Alt_6$ permuting the rows (and columns) 2-transitively.

Equivalence

Let *H* is a $v \times v$ complex Hadamard matrix, and let U_1, U_2 be $v \times v$ monomial matrices (the nonzero entries of *Ui* are roots of 1, one per row/column).

Then $U_1 H U_2$ is a complex Hadamard matrix, equivalent to H . Moreover, $U_1 H U_2$ has an automorphism group 2-transitive on rows, iff *H* does.

Theorem. Let *H* be a *v*×*v* complex Hadamard matrix admitting a group *G* of automorphisms permuting the rows of *H* 2-transitively. Then one of the following holds:

- $(i)*$ $v = pⁿ$, *H* is the character table of an elementary abelian group of order *pn*. (Sylvester Hadamard for $p = 2$)
- (ii) $v = q + 1$, q an odd prime power. *H* is of Paley type. (* iff $q \equiv 3 \mod 4$)

(*iii*)*
$$
v = 6
$$
, $H = H_6$.

- $(iv)* v = 36$, example of Ito and Leon (1983) admitting *Sp*(6*,* 2).
- $(v)*$ $v = 28$, new(?) example admitting $\Gamma L(2,8)$. Corresponds to a 7-fold cover of $K_{28,28}$.
- (vi) $v = q^{2d}$, q even. G/N is a known transitive subgroup of *Sp*(2*d, q*), *N* regular. *H* new(?) with entries $\pm 1, \pm \zeta$.

[∗]Corresponds to a distance-regular cover.

New Example

(v) H_{28} is a 28 × 28 complex Hadamard matrix with entries in $\langle e^{2\pi i/7} \rangle$.

 $H_{28} \longleftrightarrow \Gamma$, a distance-regular 7-fold cover of *K*28*,*28.

*H*₂₈ admits *G* \cong Σ*L*(2*,* 8) = *SL*(2*,* 8):3 permuting the 28 rows of *H* 2-transitively; *G* has orbit sizes 1,27 on columns.

G preserves a conic in $PG(2, \mathbb{F}_8)$, permuting the 28 passants ("exterior lines") 2-transitively. This yields a construction of H_{28} .

Previous results for an ordinary Hadamard matrix (entries ± 1) **admitting a 2-transitive group** *G*

W.M. Kantor (1969)—If the columns of *H* are not permuted faithfully by *G*, then *H* is a Sylvester Hadamard matrix.

N. Ito (1980)—Determination of *H* when *G* is almost simple.

Key Observation

Recall: an automorphism of H is a pair $g =$ (M_1, M_2) such that

$$
M_1 H M_2^* = H.
$$

Every group *G* of automorphisms of *H* has two monomial representations $\pi_1, \pi_2 : G \rightarrow$ *GL*(*v,* C) given by the projections

$$
g = (M_1, M_2) \bigg\downarrow^{\pi_1} M_1
$$

$$
\bigg\downarrow^{\pi_2} M_2
$$

Since *H* is invertible $(HH^* = vI)$, π_1 and π_2 are equivalent.

If *G* permutes the rows of *H* 2-transitively, then π_1 (and hence also π_2) has at most two irreducible constituents. In particular, *G* has at most two orbits on columns of *H*.

Construction 1: Let

- *G* be group with two inequivalent permutation representations of degree *v*;
- L_1, L_2 the corresponding point stabilizers;
- $\theta_i: L_i \to \mathbb{C}^\times$ linear characters $(i = 1, 2)$;
- \bullet θ^G_i : G \to $GL(v, \mathbb{C})$ the induced (monomial) representations.

Then each θ_i^G has at most 2 irreducible constituents.

If θ_1^G and θ_2^G are equivalent irreducible representations, then they are intertwined by a complex Hadamard matrix *H*:

$$
\theta_1^G(g)H = H\theta_2^G(g) \quad \forall g \in G.
$$

G permutes the rows of *H* 2-transitively.

Construction 2: Let

- *G* be a 2-transitive permutation group of degree *v*;
- *L* the corresponding point stabilizer;
- \bullet θ : $L \rightarrow \mathbb{C}^{\times}$ a linear character;
- \bullet θ^G : $G \rightarrow GL(v, \mathbb{C})$ the induced (monomial) representation.

Suppose θ^G is reducible. Denote the constituent degrees by $v_1 + v_2 = v$. Then the centralizer of

$$
\{\theta^G(g) : g \in G\}
$$

is 2-dimensional, and contains a complex Hadamard matrix *H* iff

$$
\frac{(v-1)(v_2-v_1)^2}{v_1v_2} \in \{0,1,2,3,4\}.
$$

Details of Construction 2:

The centralizer of

$$
\{\theta^G(g) : g \in G\}
$$

is $\langle I,C\rangle_{\mathbb C}$ where

 $C^* = C$;

entries of *C* are roots of 1, except 0's on main diagonal;

$$
C^{2} = (v-1)I + \alpha C, \ \alpha^{2} = \frac{(v-1)(v_{2}-v_{1})^{2}}{v_{1}v_{2}}.
$$

If $\alpha^2 \in \{0, 1, 2, 3, 4\}$ then $\alpha = \beta + \overline{\beta}$ for some root of unity *β*; choose

$$
H = I - \beta C.
$$

There are 2 or 3 more such constructions (similar).

We show that every example (*G* 2-transitive on the rows of *H*) must arise from one of these constructions.

We check which 2-transitive groups (obtained from the classification) are feasible.

Last Case (vi) (most technical)

$$
\bullet \ v = 2^{2d} \ge 16.
$$

• $G = 2^{1+2d}$: $Sp(2d, 2)$, non-split over $Z(G)$ = $\langle (-I, -I) \rangle$ of order 2. (Or replace $Sp(2d, 2)$) with an 'appropriate' subgroup.)

Choose subgroups $L_1, L_2 \cong 2 \times Sp(2d, 2)$ such that

- L_1 and L_2 are not conjugate in G ;
- \bullet θ_1^G and θ_2^G are equivalent, where θ_i is the nonprincipal linear character of *Li*.

Then

 ${A : \theta_1^G(g)A = A\theta_2^G(g) \ \forall g \in G} = \langle A_1, A_2 \rangle_{\mathbb{C}}$

contains complex Hadamard matrices

 $H_{\zeta} = A_1 + \zeta A_2, \quad \zeta \in \mathbb{C}^{\times}$ a root of 1*.*