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(Ordinary) Graphs

Graphs are finite unless otherwise indicated.

Graphs are unlabelled unless otherwise indicated (so
isomorphic graphs are considered the same).

In this talk, we consider only undirected graphs without loops or
multiple edges
(although most of the theory generalizes beyond this special
case).
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Example: Erdős-Rényi Random Graphs

Fix 0 < p < 1. Choose a sequence of random graphs Gn(p)
with number of vertices vn →∞ and each of the

(vn
2

)
pairs of

vertices joined with probability p independently at random.

Observations of Gn(
1
2) with 10, 50 and 100 vertices:

The limit of such a sequence is the graphon G∞(p) depicted by
a unit square shaded with grayscale darkness p (the constant
function [0,1]2 → {p}). We will make precise the topology in
which the convergence Gn(p)→ G∞(p) holds with
probability 1.

The (deterministic) Paley graphs have the same limit:
Pq → G∞(1

2).
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Example: Erdős-Rényi Random Graphs

What we don’t want:

The graph with vertex set {0,1,2,3, . . .}, and pairs of vertices
joined independently at random with uniform probability
p ∈ (0,1), gives the Erdős-Rényi graph (studied first by
Ackermann, and later Rado).

It is independent of the choice of p ∈ (0,1) (i.e. different
choices of p give isomorphic graphs with probability 1).

Our precise notion of graph limit requires our use of a uniform
probability measure on the vertex set.

For a finite vertex set, we use normalized counting measure.
For a continuum of vertices |V | = 2ℵ0 , typically V = [0,1], we
use normalized Lebesgue measure. (There is no uniform
probability measure on a countably infinite vertex set.)
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Example: Growing Uniform Attachment Graphs

Construct a sequence of graphs Gn (with vertex set
[n] = {1,2, . . . ,n}) as follows, starting with G1 = {•}. For each
n > 2, add a new vertex; and each pair {i , j} /∈ E(Gn−1) is
joined with probability 1

n (independently).

Observations of Gn for n = 10,50,100,∞:

Here G∞(x , y) = 1−max(x , y).

The origin is the upper left corner (both for graphs and
graphons).
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Graph Homomorphisms

Let G = (V ,E) and G′ = (V ′,E ′) be graphs (vertex sets V ,V ′;
edge sets E ⊆

(V
2

)
, E ′ ⊆

(V ′

2

)
).

A homomorphism G→ G′ is a map φ : V → V ′ which takes
edges to edges (i.e. {x , y} ∈ E ⇒ {φ(x), φ(y)} ∈ E ′).

The image φ(G) ⊆ G′ is a subgraph (but not an induced
subgraph in general).

If {x , y} ∈ E ⇔ {φ(x), φ(y)} ∈ E ′, then the image is an induced
subgraph.
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Homomorphism Density

Let G = (V ,E) and G′ = (V ′,E ′) be graphs, and let hom(G,G′)
be the number of graph homomorphisms G→ G′.

Thus hom(•,G′) = |V ′| and hom(• •............................... ,G′) = 2|E ′|.

The homomorphism density of G in G′ is

t(G,G′) =
probability that a random map
V → V ′ is a homomorphism

=
hom(G,G′)
|V ′||V |

.

If |V ′| = n, then the edge density of G′ is

2 |E ′|
n(n−1) = t(• •............................... ,G′) + O(1

n ).
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Convergence of Graph Sequences

Let Gn be a sequence of finite graphs with number of vertices
vn →∞.

Suppose that for every finite graph F , the sequence of
homomorphism densities t(F ,Gn) is Cauchy. Then Gn →W for
the appropriate graphon W = lim

n→∞
Gn .

In place of the homomorphism density t(F ,Gn), one may use
the induced subgraph density

tind(F ,Gn) =
no. of embeddings F → Gn as an induced subgraph

|V (Gn)||V (F )| .

The space of graphons G modulo ‘weak isomorphism’, is the
completion of the set of finite graphs. Here the appropriate
distance is cut distance δ�.
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Graphons

A labelled graphon may be viewed as a symmetric Lebesgue
measurable function W : [0,1]2 → [0,1]. The symmetry
requirement is that W (x , y) = W (y , x). Identify two such
functions if they agree almost everywhere.

If ϕ : [0,1]→ [0,1] is a measure-preserving bijection, then we
may relabel W as the graphon

Wϕ(x , y) = W (ϕ(x), ϕ(y)).

A graphon is an equivalence class of graphons up to relabelling.

Given a graphon W , one obtains sequences of finite graphs
Gn →W by sampling. Choose a sequence of positive integers
vn →∞; and let Gn be a graph with vertex set
[vn] := {1,2, . . . , vn}. Choose x1, . . . , xvn ∈ [0,1] independently
and uniformly. Vertices i 6= j are joined with probability W (xi , xj)
(independently for different pairs (i , j).)
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Distance Between Two Graphons

Define the cut distance between two graphons W and W ′ by

δ�(W ,W ′) = inf
ϕ

sup
S,T⊆[0,1]

∫
S×T

∣∣W ′(x , y)−W (ϕ(x), ϕ(y))
∣∣dx dy

where ϕ varies over all measure-preserving permutations of
[0,1] (in order that the distance is invariant under relabelling).

This is a pseudometric: There are pairs of graphons which are
not isomorphic under relabelling, yet at distance zero; for
example W ,W2,W3 where Wn(x , y) = W (nx−bnxc,ny−bnyc):
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Distance Between Two Graphs on n vertices

Let G and G′ be labelled graphs with the same vertex set
[n] = {1,2, . . . ,n}. Let A =

[
aij
]

and A′ =
[
a′ij
]

be their
adjacency matrices.

The (normalized) edit distance between G and G′ is
1
n2

∣∣{(i , j) ∈ [n]2 : aij 6= a′ij
}∣∣.

The cut distance between the labelled graphs G and G′ is

d�(G,G′) = 1
n2 max

S,T⊆[n]

∣∣{(i , j) ∈ S ×T : aij 6= a′ij
}∣∣.

For two arbitrary unlabelled graphs G and G′, both on n
vertices, we must minimize over all isomorphic graphs Ĝ ∼= G
and Ĝ′ ∼= G′:

δ̂�(G,G′) = min
Ĝ,Ĝ′

d�(Ĝ, Ĝ′).
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∣∣{(i , j) ∈ [n]2 : aij 6= a′ij
}∣∣.

The cut distance between the labelled graphs G and G′ is

d�(G,G′) = 1
n2 max

S,T⊆[n]

∣∣{(i , j) ∈ S ×T : aij 6= a′ij
}∣∣.

For two arbitrary unlabelled graphs G and G′, both on n
vertices, we must minimize over all isomorphic graphs Ĝ ∼= G
and Ĝ′ ∼= G′:

δ̂�(G,G′) = min
Ĝ,Ĝ′

d�(Ĝ, Ĝ′).
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Distance Between Graphs on n and n′ Vertices

Let G and G′ be finite graphs on n and n′=kn vertices
respectively.

‘Blow up’ G by replacing 0’s and 1’s in its adjacency matrix, by
k × k blocks of zeroes and ones respectively. The resulting
graph G(k) on n′ = nk vertices satisfies

t(F ,G) = t(F ,G(k))

for every finite graph F . Define the cut distance

δ�(G,G′) = δ̂�(G(k),G′).

Finally, if G and G′ are arbitrary finite graphs on n and n′

vertices respectively, choose k and k ′ such that nk = n′k ′ and
define

δ�(G,G′) = δ̂�(G(k),G′(k ′)).

Warning: δ� 6= δ̂� but they both define the same topology.
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Cut Distance is a Pseudometric

For an arbitrary graph G and k > 1, the blow-up G(k) 6∼= G, yet
δ�(G(k),G) = 0.

This should be compared with weak isomorphism of graphons.
For example a 5-cycle G and its blow-up G(3) are as shown:
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Convergence of Spectra

Consider a sequence of finite graphs converging to a graphon
W = lim

n→∞
Gn. We view W as the kernel of an operator

TW : L2([0,1])→ L2([0,1]):

(TW f )(x) =
∫ 1

0
W (x , y)f (y)dy .

The operator TW has (countable) real spectrum

−λ′1 6 −λ′2 6 −λ′3 6 · · · 6 0 6 · · · 6 λ3 6 λ2 6 λ1

where λk → 0 and λ′k → 0. Each Gn has (finite) real spectrum

−λ′1(n) 6 −λ′2(n) 6 −λ′3(n) 6 · · · 6 0 6 · · · 6 λ3(n) 6 λ2(n) 6 λ1(n).

Then λk (n)→ λk and λ′k (n)→ λ′k as k →∞.
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Example: Simple Threshold Graphs

Let Gn have vertex set [n]. Join i ∈ j iff i + j 6 n.

Gn for n = 5,10,50,∞:

The limit graphon G∞(x , y) =
{

1, if x + y < 1;
0, otherwise

is viewed as

an actual graph with vertex set [0,1].
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Example: Prefix Attachment Graphs

Let Gn have vertex set [n]. Start with G1 = {•}. For n > 2, join
the new vertex n to every vertex in [k ] = {1,2, . . . , k} where
k ∈ [n−1] is chosen uniformly at random.

Observed G100 with vertices listed (a) in natural order, and (b)
by decreasing degree:

[0,1] is an unnatural domain for the limit graphon! Better to use
V = [0,1]2, and W : V × V → [0,1] is

W (x , y) =
{

1, if x1<x2y2 or x2<x1y1;
0, otherwise.
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Example: Cloning

Start with an arbitrary graph G1. For n > 2, form Gn from Gn−1
by ‘cloning’ a randomly chosen vertex. (One new vertex is
added; its neighbours are the same as those of the randomly
chosen vertex of Gn−1.)

With probability 1, Gn converges to some graphon G∞. But G∞
is not uniquely determined! (Compare: the Pólya urn model.)

e.g. with a 5-cycle for G1, one possible limit graph G∞ is shown:

The vertex set [0,1] is partitioned into subintervals of arbitrary
sizes xi ∈ [0,1] satisfying x1+x2+x3+x4+x5 = 1. The sizes
(x1, . . . , x5) are uniformly distributed over a 4-dimensional
simplex.
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Example: Growing Preferential Attachment Graphs

Gn has vertex set [n]. Start with G1 = {•}. For n > 2, form Gn
from Gn−1 by joining the new vertex n to k ∈ [n−1] with
probability dk+1

n+1 (where dk is the degree of vertex k in Gn−1).

With probability 1, Gn converges to a uniform graphon
G∞(x , y) = p for some p ∈ [0,1].

But the distribution of p is not known. (Every subinterval of
[0,1] has positive probability.)

The graphs Gn have lower entropy (more ‘clustering’) than the
Erdős-Rényi graphs Gn(p).
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