Embedding Finite Partial Linear Spaces in Finite Projective Planes G. Eric Moorhouse, University of Wyoming A partial linear space (PLS) is a pair $\Gamma = (\mathfrak{P},\mathfrak{L})$ consisting of a set \mathfrak{P} (points) and a collection \mathfrak{L} of distinguished subsets of \mathfrak{P} (called *lines*) such that - (i) each line contains at least two points, and - (ii) any two distinct lines meet in at most one point. A point-line pair (P, ℓ) in Γ is called a *flag* or an *antiflag* according as $P \in \ell$ or $P \notin \ell$. Let $\Gamma=(\mathfrak{P},\mathfrak{L})$ and $\widetilde{\Gamma}=(\widetilde{\mathfrak{P}},\widetilde{\mathfrak{L}})$ be two partial linear spaces. An embedding $\alpha: \Gamma \to \widetilde{\Gamma}$ is a pair of injections $$\alpha_1: \mathfrak{P} \to \widetilde{\mathfrak{P}}, \qquad \alpha_2: \mathfrak{L} \to \widetilde{\mathfrak{L}}$$ such that for all $P \in \mathfrak{P}$, $\ell \in \mathfrak{L}$, $$P \in \ell \Rightarrow \alpha_1(P) \in \alpha_2(\ell).$$ Such an embedding is strong if $$P \in \ell \iff \alpha_1(P) \in \alpha_2(\ell).$$ Every incidence system may be identified with its *point-line incidence graph*. Thus a PLS corresponds to a bipartite graph of girth \geq 6 (i.e. no 4-cycles). An embedded PLS corresponds to a subgraph. A strongly embedded PLS corresponds to an induced subgraph. **Theorem.** Every PLS is strongly embeddable in an infinite projective plane. Proof. Use free closure. **Question.** Can every finite PLS be embedded in a finite projective plane? **Proposition.** The following two statements are logically equivalent. - (i) Every finite PLS is embeddable in a finite projective plane. - (ii) Every finite PLS is strongly embeddable in a finite projective plane. ## Our Survey Says... Francis Buekenhout polled participants at a recent conference if they believed that every finite linear space is embeddable in a finite projective plane. 22 voted YES 2 voted NO 19 abstained A partial linear space Γ is *saturated* if no edges can be added to its incidence graph without creating a 4-cycle. **Lemma.** Every finite PLS Γ is strongly embeddable in a saturated finite PLS. *Proof.* Join every antiflag (P, ℓ) in Γ by a path of length three (using two new vertices per antiflag). Then add further edges (as necessary) until the graph is saturated. **Proposition.** The following two statements are logically equivalent. - (i) Every finite PLS is embeddable in a finite projective plane. - (ii) Every finite PLS is strongly embeddable in a finite projective plane. *Proof.* (ii) \Rightarrow (i) is trivial. (i) \Rightarrow (ii): Let Γ be a finite PLS. First strongly embed $\Gamma \to \Gamma_1$ where Γ_1 is a saturated finite PLS. Then embed $\Gamma_1 \to \Pi$ where Π is a finite projective plane. The composite $$\Gamma \to \Gamma_1 \to \Pi$$ is necessarily a strong embedding of Γ . PLS: the class of all finite partial linear spaces; PROJ: the class of all point-line incidence systems formed by subsets of finite projective planes; TRANS: the class of all point-line incidence systems formed by subsets of finite projective translation planes; NET: the class of all point-line incidence systems formed by subsets of finite translation nets (arising from partial spreads). A finite PLS which *cannot* be embedded in any *Desarguesian* plane: # Another: **Theorem.** For every $d \geq 1$, there exists a finite PLS Γ which is not embeddable in any André plane of dimension $\leq d$ over its kernel. #### **André Planes** Let $E \supset F$ be an extension of finite fields, $|E| = q^d$, |F| = q. The automorphism group $$Aut(E/F) = \{1, \sigma, \sigma^2, \dots, \sigma^{d-1}\}\$$ where $\sigma: E \to E$, $x \mapsto x^q$. The norm map $N: E \to F$, $x \mapsto x^{1+q+q^2+\cdots+q^{d-1}}$ Chose any map $\phi: F^{\times} \to Aut(E/F)$ s.t. $\phi(1)=1$. There are d^{q-2} choices for ϕ . Each ϕ gives an André plane with q^{2d} points $(x,y) \in E \times E$; $q^d(q^d+1)$ lines x=a (for $a \in E$); $y=mx^{\phi(N(m))}+b$ (for $m,b \in E$). ### Essence of Proof that this is a plane Try to find a line through two given points (x_1, y_1) , (x_2, y_2) with $x_1 \neq x_2$ $$y_1$$), (x_2, y_2) with $x_1 \neq x_2$ $$(x_2, y_2)$$ $$y = mx^{\phi(N(m))} + b$$ $$(x_1, y_1)$$ $$y_2 - y_1 = m(x_2 - x_1)^{\phi(N(m))}$$ $$\Rightarrow N(y_2 - y_1) = N(m)N(x_2 - x_1)$$ $$\Rightarrow N(m) = \frac{N(y_2 - y_1)}{N(x_2 - x_1)} \text{ is determined}$$ $$\Rightarrow m = \frac{y_2 - y_1}{(x_2 - x_1)^{\phi(N(m))}} \text{ is determined}$$ $$\Rightarrow b \text{ is determined}$$ **Theorem.** For every $d \geq 1$, there exists a finite PLS Γ which is not embeddable in any André plane of dimension $\leq d$ over its kernel. **Lemma.** Given a finite PLS Γ and an integer $d \geq 1$, there exists a finite PLS $\widehat{\Gamma}$ such that for every d-colouring of the lines, there is an embedded copy of Γ with all lines having the same colour. *Proof.* This follows from a result of Nešetřil and Rödl. Proof of Theorem. Let Γ be a finite PLS not embeddable in any Desarguesian plane. Let $\widehat{\Gamma}$ be as in the Lemma. Suppose $\widehat{\Gamma}$ embeds in an André plane \mathcal{A} as above. Then Γ is embedded in \mathcal{A} in such a way that for some fixed $\alpha \in Aut(E/F)$, all lines of $\Gamma \subset \mathcal{A}$ have the form $y = mx^{\alpha} + b$ for some $m, b \in E$. Apply $(x,y) \mapsto (x^{\alpha^{-1}},y)$ to give an embedding of Γ in a Desarguesian net, a contradiction. \square # **Open Questions** Does there exist a finite PLS which is not embeddable in any translation net of dimension 2 over its kernel? Does there exist a finite PLS which is not embeddable in *any* André plane? Is there a good criterion for embeddability of a finite PLS in a finite Desarguesian plane? $$M_1x_1 - M_1x_2 + M_2x_2 - M_2x_3 + M_3x_3$$ $$-M_3x_4 + M_4x_4 - M_4x_5 + M_5x_5 - M_5x_1 = 0$$ Let $\Gamma = (\mathfrak{P}, \mathfrak{L})$ be a finite PLS. A reasonable approach to embedding Γ in a finite translation net follows: $C_0(\Gamma)=$ the \mathbb{Z} -module freely generated by $\mathfrak{P}\cup\mathfrak{L}$ $C_1(\Gamma)=$ the $\mathbb{Z}-$ module freely generated by the flags of Γ Consider the complex $$0 \xrightarrow{\delta} C_1(\Gamma) \xrightarrow{\delta} C_0(\Gamma) \xrightarrow{\delta} 0$$ where $\delta(P,\ell) = P - \ell$ for each flag (P,ℓ) . The Euler characteristic of this complex is $\dim H_0(\Gamma) - \dim H_1(\Gamma) = \dim C_0(\Gamma) - \dim C_1(\Gamma)$ Here $\dim H_0(\Gamma) = \text{number of connected components};$ $\dim H_1(\Gamma) = \dim \operatorname{ension} \operatorname{of} \operatorname{the} \operatorname{circuit} \operatorname{space};$ $\dim C_0(\Gamma) = \text{total number of points and lines};$ $\dim C_1(\Gamma) = \text{number of flags of } \Gamma.$ Given Γ , we want to find a finite vector space V such that Γ embeds in an affine translation net in $V \oplus V$. We seek functions $$f: \mathfrak{P} \to V$$ and $g: \mathfrak{L} \to E := End(V)$ such that - (i) f is injective; - (ii) for all $\ell \neq \ell'$ in \mathfrak{L} , we have $g(\ell) g(\ell') \in E^{\times} = GL(V)$; and - (iii) $H_1(\Gamma) = Z_1(\Gamma)$ is contained in the kernel of the linear map $$f \times g : C_1(\Gamma) \to V$$ defined by $(P, \ell) \mapsto g(\ell) f(P)$ for every flag (P, ℓ) of Γ . This yields a translation net (i.e. partial spread) of $V \oplus V$ with components $$S_{\ell} := \{(v, g(\ell)v) : v \in V\} \text{ for } \ell \in \mathfrak{L}$$ in which Γ is embedded.