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A partial linear space (PLS) isa pairIr = (I3, £)
consisting of a set P (points) and a collection
£ of distinguished subsets of B (called lines)
such that

(i) each line contains at least two points, and

(ii) any two distinct lines meet in at most one
point.

A point-line pair (P,¢) in " is called a flag or
an antiflag according as P/ or P & /.



Let T = (B, L) and T = (P, £) be two partial

linear spaces.

An embedding o : T — I is a pair of injections
oq:’lf—ﬂj}, a222—>5

such that for all P €3, £ € £,

Pect = ai1(P) € as(¥).

Such an embedding is strong if

Pectl <— a1(P) € ar(¥).



Every incidence system may be identified with
its point-line incidence graph.

Thus a PLS corresponds to a bipartite graph
of girth > 6 (i.e. no 4-cycles).
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An embedded PLS corresponds to a subgraph.
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A strongly embedded PLS corresponds to an
induced subgraph.
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Theorem. Every PLS is strongly embeddable
in an infinite projective plane.

Proof. Use free closure.

Question. Can every finite PLS be embedded
in a finite projective plane?

Proposition. T he following two statements are
logically equivalent.

(i) Every finite PLS is embeddable in a finite
projective plane.

(ii) Every finite PLS is strongly embeddable in
a finite projective plane.



Our Survey Says...

Francis Buekenhout polled participants at a re-
cent conference if they believed that every fi-
nite linear space is embeddable in a finite pro-
jective plane.

22 voted YES

2 voted NO

19 abstained



A partial linear space I is saturated if no edges
can be added to its incidence graph without
creating a 4-cycle.

Lemma. Every finite PLS I is strongly em-
beddable in a saturated finite PLS.

Proof. Join every antiflag (P,¢) in I by a path
of length three (using two new vertices per an-
tiflag). Then add further edges (as necessary)
until the graph is saturated.




Proposition. T he following two statements are
logically equivalent.

(i) Every finite PLS is embeddable in a finite
projective plane.

(ii) Every finite PLS is strongly embeddable in
a finite projective plane.

Proof. (ii)=-(i) is trivial.

(i)=(ii): Let I' be a finite PLS. First strongly
embed ' — 1 where 1 is a saturated finite
PLS. Then embed I'{ — Il where 1 is a finite
projective plane. The composite

[ — T —TI

IS necessarily a strong embedding of I.



PLS: the class of all finite partial linear spaces:

PROJ: the class of all point-line incidence sys-
tems formed by subsets of finite projective planes;

TRANS: the class of all point-line incidence
systems formed by subsets of finite projective
translation planes;

NET: the class of all point-line incidence sys-
tems formed by subsets of finite translation
nets (arising from partial spreads).



A finite PLS which cannot be embedded in any
Desarguesian plane:

Another:
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Theorem. For every d > 1, there exists a fi-
nite PLS I which is not embeddable in any
André plane of dimension < d over its kernel.
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André Planes

Let £ D F be an extension of finite fields,
E| = ¢4, |F|=q.

The automorphism group
Aut(E/F) = {1, 0, o2 ... ,ad_l}

where ¢ : E — E, x — z4.
Thenormmap N E — F,z— B e ol o

Chose any map ¢ : F*—Aut(E/F) s.t. ¢(1)=1.
There are d9=2 choices for ¢.

Each ¢ gives an André plane with
¢24 points (z,y) € E x E:

¢% (¢ + 1) lines x =a (for a € E):
y = ma?(N(m)) 4 (form,b e F).
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Essence of Proof that this is a plane

Try to find a line through two given points
(z1,y1), (z2,92) With z1 7 x5

(z2,92)

y = maPN(m) 4 p
(1,91)

yo — y1 = m(zp — 1)V (m)

= N(y2 —y1) = N(m)N(zp — 1)

N _
= N(m) = (Y2 = y1) is determined
N(xo — 1)
= m y2— 91 is determined

T (20 — 21)0(N(m))

= b is determined
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Theorem. For every d > 1, there exists a fi-
nite PLS I which is not embeddable in any
André plane of dimension < d over its kernel.

Lemma. Given a finite PLS T and an integer
d > 1, there exists a finite PLS T such that
for every d-colouring of the lines, there is an
embedded copy of I' with all lines having the
same colour.

Proof. This follows from a result of NeSetFil
and RodI.

Proof of Theorem. Let I be a finite PLS no:c
embeddable in any DesarguesiaAn plane. Let [
be as in the Lemma. Suppose [ embeds in an

André plane A as above.

Then I is embedded in A in such a way that
for some fixed a € Aut(E/F), all linesof I C A
have the form y = mx® + b for some m,b € E.

Apply (z,y) — (a:o‘_l,y) to give an embedding
of [ in a Desarguesian net, a contradiction.
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Open Questions
Does there exist a finite PLS which is not em-
beddable in any translation net of dimension 2

over its kernel?

Does there exist a finite PLS which is not em-
beddable in any André plane?

Is there a good criterion for embeddability of
a finite PLS in a finite Desarguesian plane?
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(T4,y4)

y = Mzx+03

y = Msx+0b5

(r3,¥3)

(z1,v1)
y = Myix+b1

(z2,y2)

Mix1 — Myxo + Moxp — Mox3 + M3zs
—Mzxa+ Maxa—Maxs+ Mszrs—Msxy =0
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Let ' = (B, £) be a finite PLS. A reasonable
approach to embedding I in a finite translation
net follows:

Co(IM) = the Z-module freely generated by PUL

C1(I") = the Z-module freely generated by the
flags of I

Consider the complex
0 -2 01(M) =2 op(r) -5 0

where 6(P,¢) = P — ¢ for each flag (P,¢). The
Euler characteristic of this complex is

dim Ho(IMN)—dim H1(I"') = dim Co(IN)—dim C1(IN)
Here

dim Hp(IM) = number of connected components;
dim H1(I") = dimension of the circuit space;
dim Co(I") = total number of points and lines;

dim C1(I") = number of flags of I".
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Given [, we want to find a finite vector space
V such that ' embeds in an affine translation
net in V@ V. We seek functions
f:B—-V and g¢g:£— E:= End(V)

such that
(i) f is injective;
(ii) for all £ = ¢ in £, we have g(¥) — g(¢") €
E* = GL(V); and
(iii) H1 (") = Z1(I") is contained in the kernel
of the linear map

fxg:01(MN)—V

defined by (P, ¢) — g(¢) f(P) for every flag (P, ¢)
of I.

This yields a translation net (i.e. partial spread)
of V&V with components

Sp i ={(v,g(l)v) :veV} forlel

in which I is embedded.
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