# Embedding Finite Partial Linear Spaces in Finite Projective Planes

G. Eric Moorhouse, University of Wyoming

A partial linear space (PLS) is a pair  $\Gamma = (\mathfrak{P},\mathfrak{L})$  consisting of a set  $\mathfrak{P}$  (points) and a collection  $\mathfrak{L}$  of distinguished subsets of  $\mathfrak{P}$  (called *lines*) such that

- (i) each line contains at least two points, and
- (ii) any two distinct lines meet in at most one point.

A point-line pair  $(P, \ell)$  in  $\Gamma$  is called a *flag* or an *antiflag* according as  $P \in \ell$  or  $P \notin \ell$ .

Let  $\Gamma=(\mathfrak{P},\mathfrak{L})$  and  $\widetilde{\Gamma}=(\widetilde{\mathfrak{P}},\widetilde{\mathfrak{L}})$  be two partial linear spaces.

An embedding  $\alpha: \Gamma \to \widetilde{\Gamma}$  is a pair of injections

$$\alpha_1: \mathfrak{P} \to \widetilde{\mathfrak{P}}, \qquad \alpha_2: \mathfrak{L} \to \widetilde{\mathfrak{L}}$$

such that for all  $P \in \mathfrak{P}$ ,  $\ell \in \mathfrak{L}$ ,

$$P \in \ell \Rightarrow \alpha_1(P) \in \alpha_2(\ell).$$

Such an embedding is strong if

$$P \in \ell \iff \alpha_1(P) \in \alpha_2(\ell).$$

Every incidence system may be identified with its *point-line incidence graph*.

Thus a PLS corresponds to a bipartite graph of girth  $\geq$  6 (i.e. no 4-cycles).



An embedded PLS corresponds to a subgraph.



A strongly embedded PLS corresponds to an induced subgraph.



**Theorem.** Every PLS is strongly embeddable in an infinite projective plane.

Proof. Use free closure.

**Question.** Can every finite PLS be embedded in a finite projective plane?

**Proposition.** The following two statements are logically equivalent.

- (i) Every finite PLS is embeddable in a finite projective plane.
- (ii) Every finite PLS is strongly embeddable in a finite projective plane.

## Our Survey Says...

Francis Buekenhout polled participants at a recent conference if they believed that every finite linear space is embeddable in a finite projective plane.

22 voted YES

2 voted NO

19 abstained

A partial linear space  $\Gamma$  is *saturated* if no edges can be added to its incidence graph without creating a 4-cycle.

**Lemma.** Every finite PLS  $\Gamma$  is strongly embeddable in a saturated finite PLS.

*Proof.* Join every antiflag  $(P, \ell)$  in  $\Gamma$  by a path of length three (using two new vertices per antiflag). Then add further edges (as necessary) until the graph is saturated.



**Proposition.** The following two statements are logically equivalent.

- (i) Every finite PLS is embeddable in a finite projective plane.
- (ii) Every finite PLS is strongly embeddable in a finite projective plane.

*Proof.* (ii) $\Rightarrow$ (i) is trivial.

(i) $\Rightarrow$ (ii): Let  $\Gamma$  be a finite PLS. First strongly embed  $\Gamma \to \Gamma_1$  where  $\Gamma_1$  is a saturated finite PLS. Then embed  $\Gamma_1 \to \Pi$  where  $\Pi$  is a finite projective plane. The composite

$$\Gamma \to \Gamma_1 \to \Pi$$

is necessarily a strong embedding of  $\Gamma$ .



PLS: the class of all finite partial linear spaces;

PROJ: the class of all point-line incidence systems formed by subsets of finite projective planes;

TRANS: the class of all point-line incidence systems formed by subsets of finite projective translation planes;

NET: the class of all point-line incidence systems formed by subsets of finite translation nets (arising from partial spreads).

A finite PLS which *cannot* be embedded in any *Desarguesian* plane:



# Another:



**Theorem.** For every  $d \geq 1$ , there exists a finite PLS  $\Gamma$  which is not embeddable in any André plane of dimension  $\leq d$  over its kernel.

#### **André Planes**

Let  $E \supset F$  be an extension of finite fields,  $|E| = q^d$ , |F| = q.

The automorphism group

$$Aut(E/F) = \{1, \sigma, \sigma^2, \dots, \sigma^{d-1}\}\$$

where  $\sigma: E \to E$ ,  $x \mapsto x^q$ .

The norm map  $N: E \to F$ ,  $x \mapsto x^{1+q+q^2+\cdots+q^{d-1}}$ 

Chose any map  $\phi: F^{\times} \to Aut(E/F)$  s.t.  $\phi(1)=1$ . There are  $d^{q-2}$  choices for  $\phi$ .

Each  $\phi$  gives an André plane with  $q^{2d}$  points  $(x,y) \in E \times E$ ;  $q^d(q^d+1)$  lines x=a (for  $a \in E$ );  $y=mx^{\phi(N(m))}+b$  (for  $m,b \in E$ ).

### Essence of Proof that this is a plane

Try to find a line through two given points  $(x_1, y_1)$ ,  $(x_2, y_2)$  with  $x_1 \neq x_2$ 

$$y_1$$
),  $(x_2, y_2)$  with  $x_1 \neq x_2$ 

$$(x_2, y_2)$$

$$y = mx^{\phi(N(m))} + b$$

$$(x_1, y_1)$$

$$y_2 - y_1 = m(x_2 - x_1)^{\phi(N(m))}$$

$$\Rightarrow N(y_2 - y_1) = N(m)N(x_2 - x_1)$$

$$\Rightarrow N(m) = \frac{N(y_2 - y_1)}{N(x_2 - x_1)} \text{ is determined}$$

$$\Rightarrow m = \frac{y_2 - y_1}{(x_2 - x_1)^{\phi(N(m))}} \text{ is determined}$$

$$\Rightarrow b \text{ is determined}$$

**Theorem.** For every  $d \geq 1$ , there exists a finite PLS  $\Gamma$  which is not embeddable in any André plane of dimension  $\leq d$  over its kernel.

**Lemma.** Given a finite PLS  $\Gamma$  and an integer  $d \geq 1$ , there exists a finite PLS  $\widehat{\Gamma}$  such that for every d-colouring of the lines, there is an embedded copy of  $\Gamma$  with all lines having the same colour.

*Proof.* This follows from a result of Nešetřil and Rödl.

Proof of Theorem. Let  $\Gamma$  be a finite PLS not embeddable in any Desarguesian plane. Let  $\widehat{\Gamma}$  be as in the Lemma. Suppose  $\widehat{\Gamma}$  embeds in an André plane  $\mathcal{A}$  as above.

Then  $\Gamma$  is embedded in  $\mathcal{A}$  in such a way that for some fixed  $\alpha \in Aut(E/F)$ , all lines of  $\Gamma \subset \mathcal{A}$  have the form  $y = mx^{\alpha} + b$  for some  $m, b \in E$ .

Apply  $(x,y) \mapsto (x^{\alpha^{-1}},y)$  to give an embedding of  $\Gamma$  in a Desarguesian net, a contradiction.  $\square$ 

# **Open Questions**

Does there exist a finite PLS which is not embeddable in any translation net of dimension 2 over its kernel?

Does there exist a finite PLS which is not embeddable in *any* André plane?

Is there a good criterion for embeddability of a finite PLS in a finite Desarguesian plane?



$$M_1x_1 - M_1x_2 + M_2x_2 - M_2x_3 + M_3x_3$$
$$-M_3x_4 + M_4x_4 - M_4x_5 + M_5x_5 - M_5x_1 = 0$$

Let  $\Gamma = (\mathfrak{P}, \mathfrak{L})$  be a finite PLS. A reasonable approach to embedding  $\Gamma$  in a finite translation net follows:

 $C_0(\Gamma)=$  the  $\mathbb{Z}$ -module freely generated by  $\mathfrak{P}\cup\mathfrak{L}$ 

 $C_1(\Gamma)=$  the  $\mathbb{Z}-$ module freely generated by the flags of  $\Gamma$ 

Consider the complex

$$0 \xrightarrow{\delta} C_1(\Gamma) \xrightarrow{\delta} C_0(\Gamma) \xrightarrow{\delta} 0$$

where  $\delta(P,\ell) = P - \ell$  for each flag  $(P,\ell)$ . The Euler characteristic of this complex is

 $\dim H_0(\Gamma) - \dim H_1(\Gamma) = \dim C_0(\Gamma) - \dim C_1(\Gamma)$ Here

 $\dim H_0(\Gamma) = \text{number of connected components};$ 

 $\dim H_1(\Gamma) = \dim \operatorname{ension} \operatorname{of} \operatorname{the} \operatorname{circuit} \operatorname{space};$ 

 $\dim C_0(\Gamma) = \text{total number of points and lines};$ 

 $\dim C_1(\Gamma) = \text{number of flags of } \Gamma.$ 

Given  $\Gamma$ , we want to find a finite vector space V such that  $\Gamma$  embeds in an affine translation net in  $V \oplus V$ . We seek functions

$$f: \mathfrak{P} \to V$$
 and  $g: \mathfrak{L} \to E := End(V)$ 

such that

- (i) f is injective;
- (ii) for all  $\ell \neq \ell'$  in  $\mathfrak{L}$ , we have  $g(\ell) g(\ell') \in E^{\times} = GL(V)$ ; and
- (iii)  $H_1(\Gamma) = Z_1(\Gamma)$  is contained in the kernel of the linear map

$$f \times g : C_1(\Gamma) \to V$$

defined by  $(P, \ell) \mapsto g(\ell) f(P)$  for every flag  $(P, \ell)$  of  $\Gamma$ .

This yields a translation net (i.e. partial spread) of  $V \oplus V$  with components

$$S_{\ell} := \{(v, g(\ell)v) : v \in V\} \text{ for } \ell \in \mathfrak{L}$$

in which  $\Gamma$  is embedded.