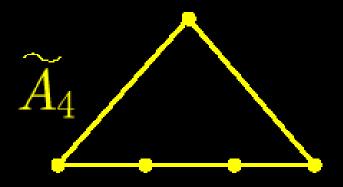
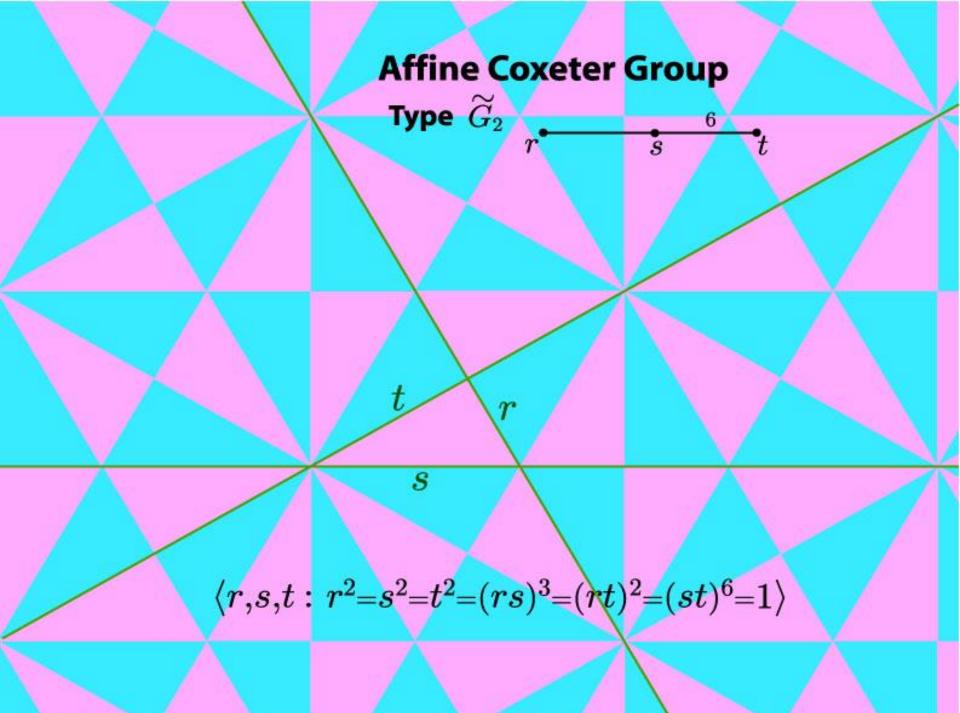
Deflation in Coxeter Groups

G Eric Moorhouse UNIVERSITY OF WYOMING



based on recent work (1993-present) of John H. Conway and Christopher S. Simons



Affine Coxeter Group

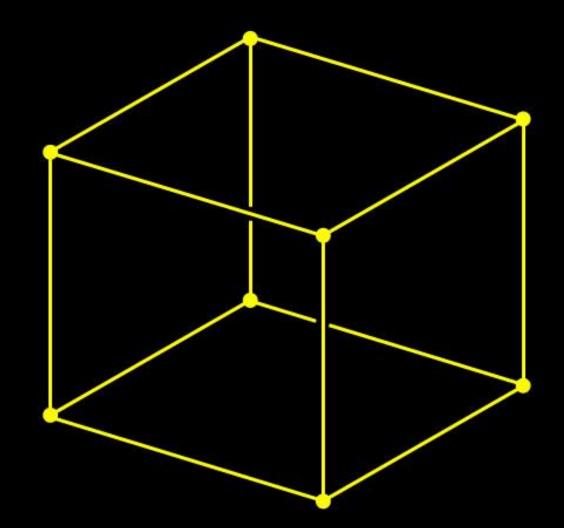
S

Type \widetilde{A}_2 \bigwedge^t

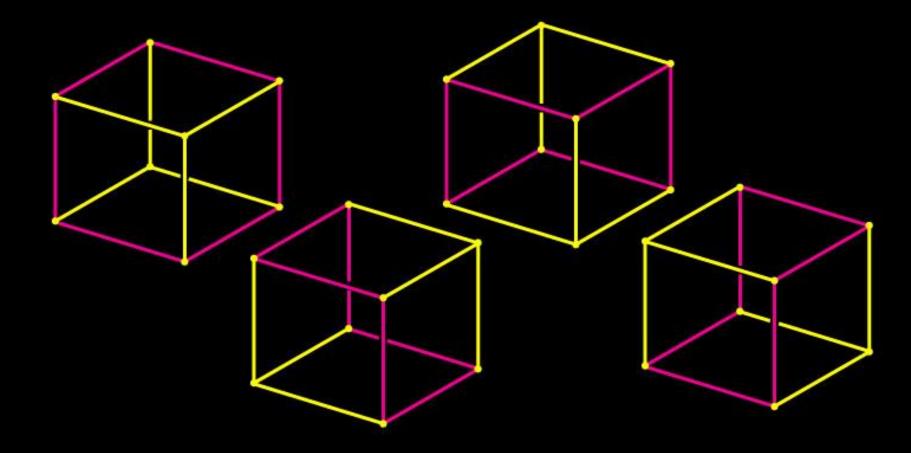
 $\langle r,s,t: r^2 = s^2 = t^2 = (rs)^3 = (rt)^3 = (st)^3 = 1 \rangle$

r

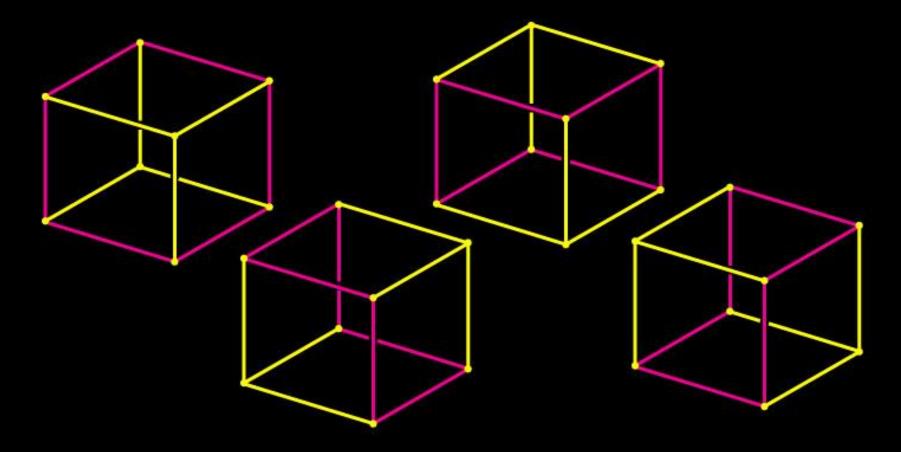
S



The cube defines an infinite Coxeter group.

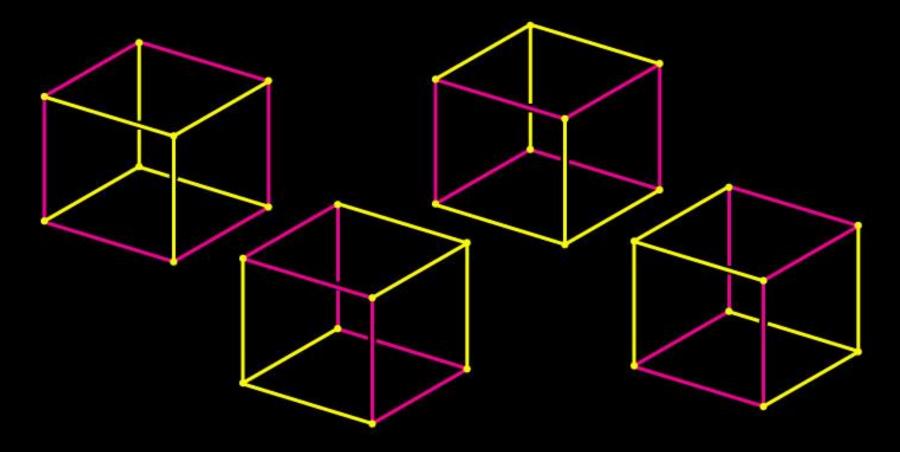


The cube has four 6-cycles (as induced subgraphs).



Deflate every \widetilde{A}_5 to an A_5 .

This can be done by imposing an additional relation $s_1s_2s_3s_4s_5s_6s_5s_4s_3s_2 = 1$ for every 6-cycle.



Deflate every \widetilde{A}_5 to an A_5 .

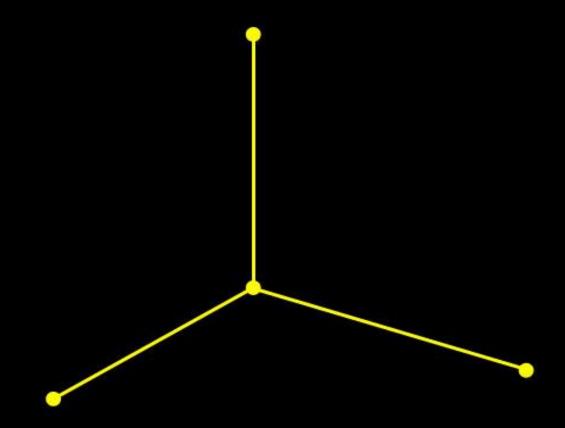
The resulting homomorphic image is a finite group isomorphic to $PSp_4(3) \times 2 = U_4(2) \times 2$ of order 51840.

Let *G* be a finite group generated by a set of *n* elements of order 2.

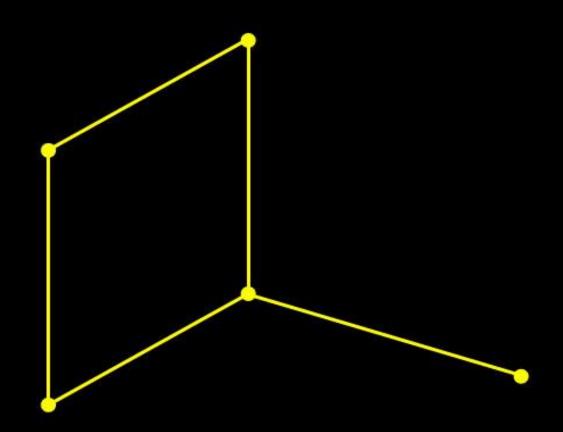
Then *G* is a homomorphic image of a Coxeter group defined by a graph on *n* vertices. But this presentation is not usually very concise. We would prefer *n* to be very small relative to |G|.

Problem: Find groups *G* having a concise presentation obtained by deflating a Coxeter group.

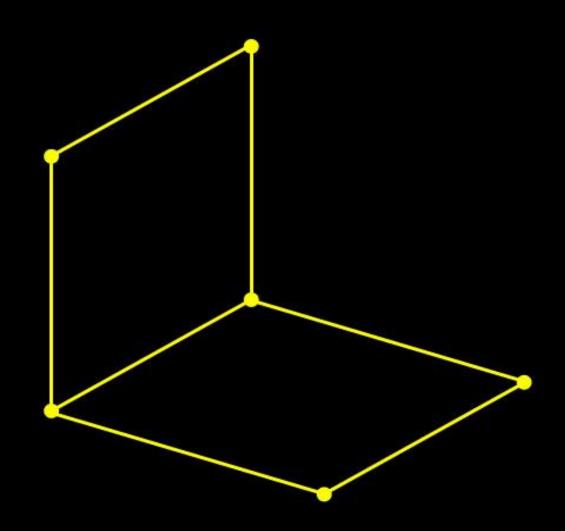
Examples grow on trees!

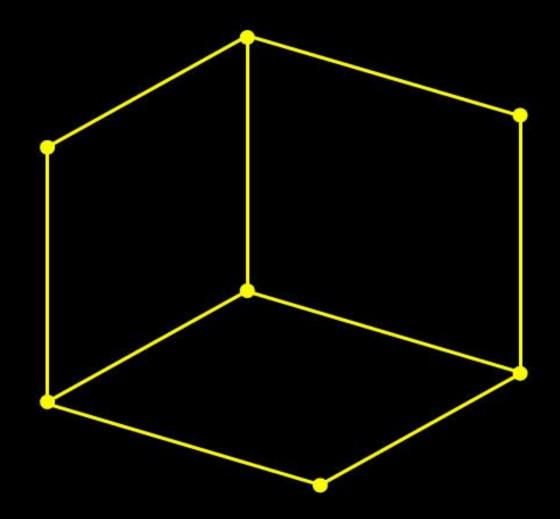


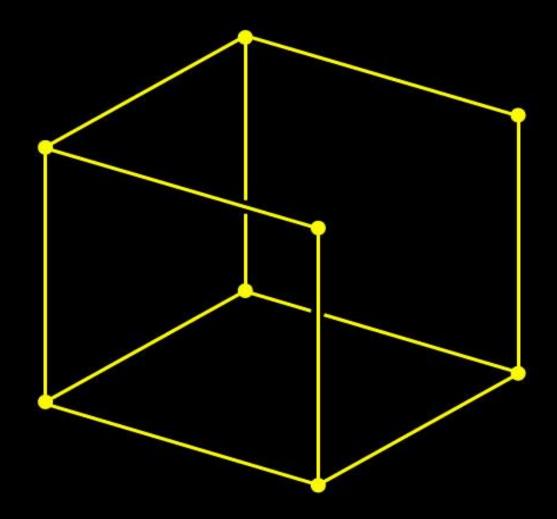
The graph Y₁₁₁

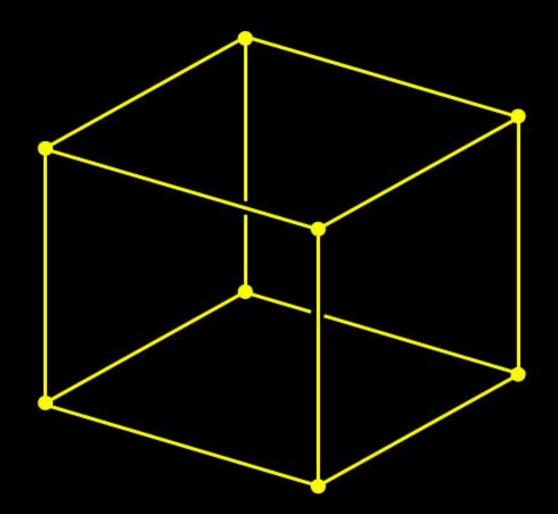


Close A_3 to form \widetilde{A}_3









Goal: Close every 3-path to a 4-cycle, adding as few vertices as possible.

Interesting examples arise also from:

 Y_{222} (7 vertices)

Close induced 5-paths to 6-cycles

Yields the Petersen graph (10 vertices)

Deflate every \widetilde{A}_6 to A_6

The resulting group is $PSp_4(3):2 = U_4(2):2$ of order 51840 Interesting examples arise also from:

 Y_{333} (10 vertices)

Close induced 7-paths to 8-cycles

Yields the incidence graph of $PG_2(2)$ (14 vertices)

Deflate every \widetilde{A}_8 to A_8

The resulting group is the group $O_8^{-}(2)$:2 of order 394,813,440

Interesting examples arise also from:

 Y_{555} (16 vertices)

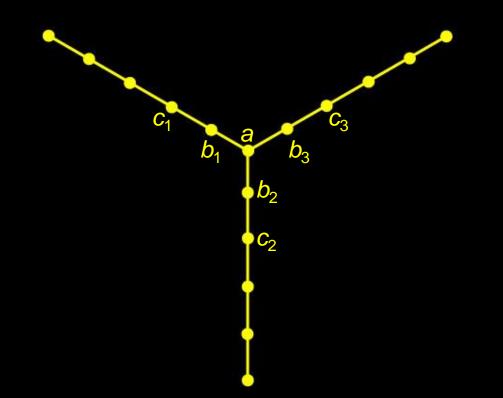
Close induced 11-paths to 12-cycles

Yields the incidence graph of $PG_2(3)$ (26 vertices)

Deflate every \widetilde{A}_{12} to A_{12}

The resulting group is the Bimonster ($M \times M$):2 of order $\approx 1.31 \times 10^{108}$

Theorem (Ivanov-Norton, 1992) The Bimonster ($M \times M$):2 is presented by the Coxeter group of the graph Y_{555} with the single additional relation $(ab_1c_1ab_2c_2ab_3c_3)^{10} = 1$.



 $V = \mathbb{R}^{3k+1}$ is the set of all vectors

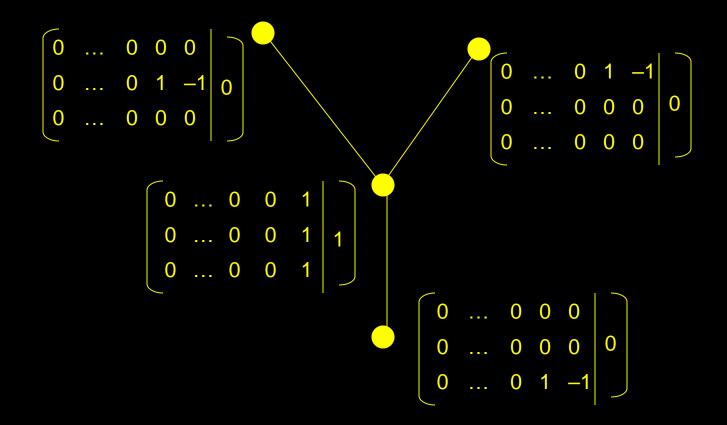
$$V = \begin{bmatrix} V_{11} & V_{12} & \dots & V_{1k} \\ V_{21} & V_{12} & \dots & V_{2k} \\ V_{31} & V_{32} & \dots & V_{3k} \end{bmatrix}$$

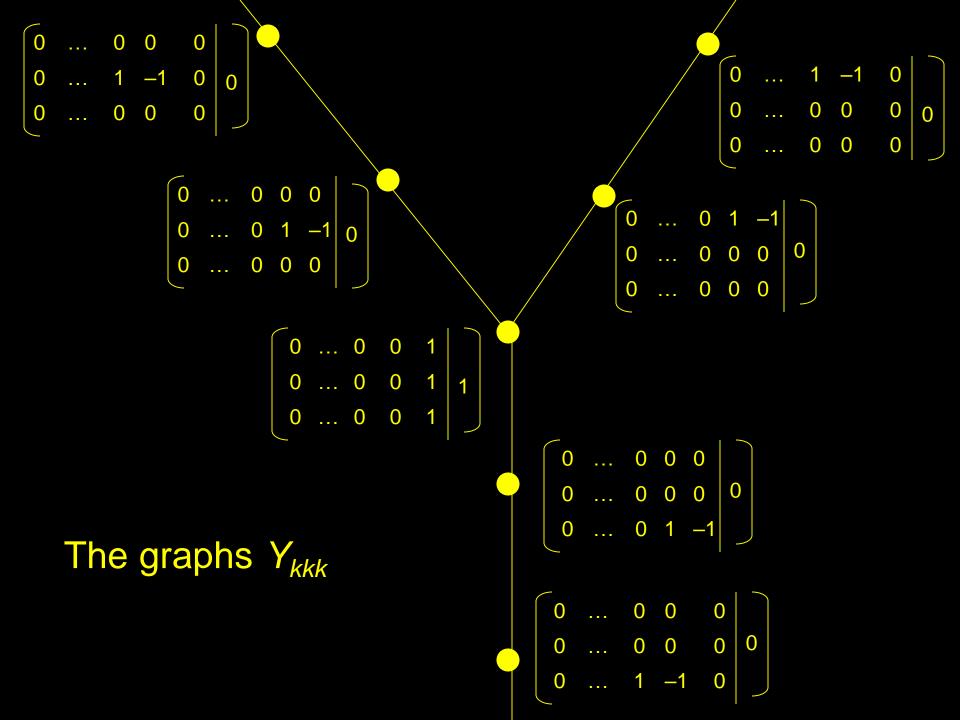
with the Lorentzian inner product

 $V \cdot W = V_{11}W_{11} + V_{12}W_{12} + \dots + V_{3k}W_{3k} - V_{\infty}W_{\infty}$

Vertices are represented by vectors $v_1, v_2, ..., v_n$ such that $v_i \cdot v_j = 2$. Vertices *i*,*j* are joined whenever $v_i \cdot v_j = \pm 1$ (but possibly for other nonzero values of $v_i \cdot v_j$ as well).

$$\left[\begin{array}{cccccccccccc}
0 & \dots & 0 & 0 & 1 \\
0 & \dots & 0 & 0 & 1 \\
0 & \dots & 0 & 0 & 1
\end{array}\right]$$





MAPLE demonstrations

a handy applet for manipulating small graphs http://www.math.ucsd.edu/~llu/dgea

