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Some ovoids in the O+
6 (p) quadric (Klein quadric)

Consider a prime p ≡ 1 mod 4. Let S be the set of all

x = (x1, . . . , x6) ∈ Z
6 such that

1 xi ≡ 1 mod 4; and
2

∑

i x2
i = 6p.

Then |S| = p2 + 1; and for all x 6= y in S, x · y 6≡ 0 mod p.

Example (p = 5, |S| = 52 + 1 = 26)

S contains 6 vectors of shape (5, 1, 1, 1, 1, 1);

20 vectors of shape (−3,−3,−3, 1, 1, 1).

Example (p = 13, |S| = 132 + 1 = 170)

S contains 20 vectors of shape (5, 5, 5, 1, 1, 1);

30 vectors of shape (−7,−5, 1, 1, 1, 1);
60 vectors of shape (5, 5,−3,−3,−3, 1);

60 vectors of shape (−7,−3,−3,−3, 1, 1).
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Consider a prime p ≡ 1 mod 4. Let S be the set of all

x = (x1, . . . , x6) ∈ Z
6 such that

1 xi ≡ 1 mod 4; and

2
∑

i x2
i = 6p.

Then |S| = p2 + 1; and for all x 6= y in S, x · y 6≡ 0 mod p.

Let V = F
6
p and consider the quadratic form Q : V → Fp defined

by Q(v) =
∑

i v2
i . A point 〈v〉 (i.e. one-dimensional subspace)

is singular if Q(v) = 0. The quadric associated to Q is the set

of singular points. This is the Klein quadric over Fp.

Reduction mod p gives maps Z → Fp and Z6 → F6
p denoted by

x 7→ x = (x1, . . . , x6).

The points 〈v〉 for v ∈ S as above, gives an ovoid O in the Klein

quadric: p2 + 1 points of the quadric forming a coclique in the

collinearity graph of the quadric.
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The O+
8 (p) quadric (triality quadric)

Let V be an 8-dimensional vector space over Fp, with

hyperbolic quadratic form Q : V → Fp. (For p odd, we may take

Q(v) =
∑

i v2
i .) The nondegenerate bilinear form associated to

Q is
v · w = Q(v + w) − Q(v)− Q(w).

A point 〈v〉 (i.e. one-dimensional subspace) is singular if

Q(v) = 0. The quadric associated to Q is the set of singular

points. This is the triality quadric over Fp. Two points 〈v〉, 〈w〉 of

the quadric lie on a line of the quadric iff v · w = 0.

An ovoid is a set of p3 + 1 points in the quadric forming a

coclique in the collinearity graph of the quadric. These exist for

all p (Conway et al. (1988)).
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The E8 Root Lattice

Define the lattice E ⊂ R
8 by

E =
{

1
2

(

x1, x2, . . . , x8

)

: xi ∈ Z, x1≡x2≡ · · ·≡x8 mod 2,
∑

ixi ≡ 0 mod 4
}

.

E has 240 root vectors (vectors x ∈ E with minimum ||x ||2 = 2):

112 vectors of shape (±1,±1, 0, 0, 0, 0, 0, 0);

128 vectors of shape 1
2

(

±1,±1, . . . ,±1
)

(an even number

of ‘−’ signs).

Reduction mod p gives maps Z → Fp and E → V = E/pE

denoted by . Since 1
2
||x ||2 ∈ Z for all x ∈ E, we have a

quadratic form

Q : V → Fp, Q(x) = 1
2 ||x ||

2 .

G. Eric Moorhouse Counting Ovoids in the Triality Quadric



The E8 Root Lattice

Define the lattice E ⊂ R
8 by

E =
{

1
2

(

x1, x2, . . . , x8

)

: xi ∈ Z, x1≡x2≡ · · ·≡x8 mod 2,
∑

ixi ≡ 0 mod 4
}

.

E has 240 root vectors (vectors x ∈ E with minimum ||x ||2 = 2):

112 vectors of shape (±1,±1, 0, 0, 0, 0, 0, 0);

128 vectors of shape 1
2

(

±1,±1, . . . ,±1
)

(an even number

of ‘−’ signs).

Reduction mod p gives maps Z → Fp and E → V = E/pE

denoted by . Since 1
2
||x ||2 ∈ Z for all x ∈ E, we have a

quadratic form

Q : V → Fp, Q(x) = 1
2 ||x ||

2 .

G. Eric Moorhouse Counting Ovoids in the Triality Quadric



The E8 Root Lattice

Define the lattice E ⊂ R
8 by

E =
{

1
2

(

x1, x2, . . . , x8

)

: xi ∈ Z, x1≡x2≡ · · ·≡x8 mod 2,
∑

ixi ≡ 0 mod 4
}

.

E has 240 root vectors (vectors x ∈ E with minimum ||x ||2 = 2):

112 vectors of shape (±1,±1, 0, 0, 0, 0, 0, 0);

128 vectors of shape 1
2

(

±1,±1, . . . ,±1
)

(an even number

of ‘−’ signs).

Reduction mod p gives maps Z → Fp and E → V = E/pE

denoted by . Since 1
2
||x ||2 ∈ Z for all x ∈ E, we have a

quadratic form

Q : V → Fp, Q(x) = 1
2 ||x ||

2 .

G. Eric Moorhouse Counting Ovoids in the Triality Quadric



Conway’s binary ovoids

Let p be an odd prime. Fix a root, say

e = 1
2

(

1, 1, 1, 1, 1, 1, 1, 1
)

∈ E .

Let S be the set of vectors x ∈ Ze + 2E ⊂ E such that
1
2 ||x ||

2 = p. Then |S| = 2(p3+1) and S consists of p3 + 1

pairs ±x .

Reducing these vectors mod pE gives

O = O2,p,e =
{

〈x〉 : ±x ∈ S
}

,

an ovoid in E/pE ' O+
8 (p) (the binary ovoid).
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S contains 28 vector pairs of shape ±1
2

(

−3,−3, 1, 1, 1, 1, 1, 1
)

.

Example (p = 5, |O| = 53 + 1 = 126)

S contains 70 vector pairs of shape ±1
2

(

−3,−3,−3,−3,1,1,1,1
)

;

56 vector pairs of shape ±1
2

(

5,−3, 1, 1, 1, 1, 1, 1
)

.
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The r -ary ovoids in O+
8 (p)

Let r 6= p be odd primes. Fix u ∈ E such that

(

− p
2
||u||2

r

)

= +1.

Let S be the set of vectors x ∈ Zu + rE ⊂ E such that
1
2 ||x ||

2 = k(r − k)p for some k ∈ {1, 2, . . . , r−1
2 }. Then

|S| = 2(p3+1) and S consists of p3+1 pairs ±x . (Some

degenerate cases occur for r > p.)

Reducing these vectors mod pE gives

O = Or ,p,u =
{

〈x〉 : ±x ∈ S
}

,

an ovoid in E/pE ' O+
8 (p).

Ovoids isomorphic to Or ,p,u (for primes r 6= p, including r = 2)

are the r -ary ovoids of type E8 in O+
8 (p).
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Open Questions

1 For each p, there are infinitely many choices of r , u to

choose in constructing Or ,p,u but only finitely many ovoids

in O+
8 (p). How many? How do we know when we have

found them all?
2 Let w(p) be the number of isomorphism classes of ovoids

of type E8 in O+
8 (p). Does w(p) → ∞ as p → ∞? (By

Conway et al. (1988), w(p) > 1.)
3 r , p don’t really have to be primes. Does anything

comparable work in O+
8

(q)?
4 Ovoids in O+

8 (q) which lie in an O7(q) hyperplane, are

known only for q = 3j . Why? Is the ovoid in O7(3) the

unique E8-type ovoid in O7(p)?
5 Most E8-type ovoids should be rigid, i.e. having trivial

stabilizer in PGO+
8 (p), but no rigid ovoids in O+

8 (q) have

been found.
6 What is really going on in the construction of E8-type

ovoids?
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Conjectured number of E8-type ovoids

Let O1,O2, . . . ,Ow be representatives for the isomorphism

types of E8-type ovoids in O+
8

(p), under G = PGO+
8

(p). The

number of ovoids isomorphic to Oi is [G : GOi
]; note that

|G| = |PGO+
8 (p)| = 2

d
p12(p6 − 1)(p4 − 1)2(p2 − 1)

where d = gcd(p − 1, 2).

The subgroup W (E8)/{±I} ∼= PGO+
8

(2) 6 G has order

|PGO+
8

(2)| = 348,364,800.
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Conjectured number of E8-type ovoids

Conjectured Mass Formula

For p > 5,
w(p)
∑

i=1

[G : GOi
] =

|G|(p4 + 239)

4|PGO+
8 (2)|

;

i.e.

|PGO+
8 (2)|

|GO1
|

+
|PGO+

8 (2)|

|GO2
|

+ · · ·+
|PGO+

8 (2)|

|GOw |
=

p4 + 239

4
.

The stabilizers GOi
are not necessarily subgroups of PGO+

8 (2).
I am not claiming that the terms in this sum are always integers

(but in every known case they are).

The cases p = 2, 3 are genuine exceptions. (When p = 3 the

E8-type ovoids lie in hyperplanes.)
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The abundance of ovoids

Corollary

Let n(p) be the number of isomorphism types of ovoids in

O+
8 (p). If the Mass Formula holds, then for some absolute

constant C > 0, n(p) > Cp4 → ∞ as p → ∞.

Currently it is known that n(p) > 1 (Conway et al., 1988).
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Verifying the Mass Formula for small p

p w(p) Mass Formula

5 2 96+120 = 216 = 54+239
4

7 2 120+540 = 660 = 74+239
4

11 4 120+120+960+2520 = 3720 = 114+239
4

13 4 120+1080+1680+4320 = 7200 = 134+239
4

17 7 120+120+540+960+3360+4320+11520 = 20940 = 174+239
4

19 6 120+120+1080+7560+8640+15120 = 32640 = 194+239
4

23 10
120+120+120+540+960+2520+3360

+7560+20160+34560 = 70020 = 234+239
4

Strictly speaking, these terms are lower bounds found by

enumerating r -ary ovoids in O+
8 (p) for small r and testing for

isomorphism. To compute Aut(O), use nauty to determine

Aut(∆(O)) where ∆(O) is the associated two-graph. In general

Aut(O) ⊆ Aut(∆(O)), and we check that equality holds in all

cases.
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The Integral Octaves

We may regard E as a nonassociative ring with identity. (There

are 28800 ways to do this.) The 240 root vectors become the

group E× of units in this ring.

We call E the ring of integral octaves. The octonion algebra is

O = R ⊗Z E.

There is an anti-automorphism x 7→ x∗ satisfying

(x + y)∗ = x∗ + y∗; (xy)∗ = y∗x∗; xx∗ = x∗x = 1
2
||x ||2.

In particular, 1
2
||xy ||2 = 1

2
||x ||2 · 1

2
||y ||2.

If 1
2 ||x ||

2=mn where gcd(m, n) = 1, then x=yz for some y , z∈E

with 1
2
||y ||2=m, 1

2
||z||2=n. There are exactly 240 such pairs

(y , z).
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Canonical bijections between E8-type ovoids in O+
8 (p)

Fix odd primes r 6= p and u ∈ E such that

(

− p
2
||u||2

r

)

= +1.

Denote the binary ovoid

O2,p,1 =
{

〈x〉 : ±x ∈ Z + 2E, 1
2
||x ||2 = p

}

.

An alternative construction of the r -ary ovoid Or ,p,u is via the

canonical bijection

f : Or ,p,u → O2,p,1

constructed as follows. Given w ∈ Zu + rE with
1
2
||x ||2 = k(r − k)p, 1 6 k 6

r−1
2

, we have

w = xy

for some x , y ∈ E such that 1
2
||x ||2 = p and 1

2
||y ||2 = k(r − k). If

we also require x ∈ Z + 2E, then this factorization is unique up

to a ±1 factor and our bijection is

f : 〈w〉 → 〈x〉.
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Binary ovoids in an O7(p)-hyperplane

When does Or ,p,u lie in an O7(p)-hyperplane?

The binary ovoid O = O2,p,e lies in an O7(p)-hyperplane iff

p = 3.

But even this case is rather tricky.
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Thank You!

Questions?
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