Counting Ovoids in the Triality Quadric

G. Eric Moorhouse

Department of Mathematics University of Wyoming

RMAC Seminar 12 April 2013

∢ 重→

重

 \blacksquare \overline{AB}

Consider a prime $p \equiv 1 \mod 4$. Let S be the set of all $x=(x_1,\ldots,x_6)\in\mathbb{Z}^6$ such that

$$
x_i \equiv 1 \mod 4; \text{ and}
$$

$$
2\sum_i x_i^2=6p.
$$

Then $|\mathcal{S}| = p^2 + 1$; and for all $x \neq y$ in $\mathcal{S},\ x \cdot y \neq 0$ mod p .

S contains 6 vectors of shape $(5, 1, 1, 1, 1, 1)$; 20 vectors of shape (−3, −3, −3, 1, 1, 1).

S contains 20 vectors of shape $(5, 5, 5, 1, 1, 1)$; 30 vectors of shape (−7, −5, 1, 1, 1, 1); 60 vectors of shape (5, 5, −3, −3, −3, 1); 60 vectors of shape (−7, −3, −3, −3, 1, 1).

Consider a prime $p \equiv 1 \mod 4$. Let S be the set of all $x=(x_1,\ldots,x_6)\in\mathbb{Z}^6$ such that

$$
x_i \equiv 1 \mod 4; \text{ and}
$$

$$
2\sum_i x_i^2=6p.
$$

Then $|\mathcal{S}| = \rho^2 + 1$; and for all $x \neq y$ in $\mathcal{S},\ x \cdot y \neq 0$ mod ρ .

S contains 6 vectors of shape $(5, 1, 1, 1, 1, 1)$; 20 vectors of shape (−3, −3, −3, 1, 1, 1).

S contains 20 vectors of shape $(5, 5, 5, 1, 1, 1)$; 30 vectors of shape (−7, −5, 1, 1, 1, 1); 60 vectors of shape (5, 5, −3, −3, −3, 1); 60 vectors of shape (−7, −3, −3, −3, 1, 1).

Consider a prime $p \equiv 1 \mod 4$. Let S be the set of all $x=(x_1,\ldots,x_6)\in\mathbb{Z}^6$ such that

$$
x_i \equiv 1 \mod 4; \text{ and}
$$

$$
2\sum_i x_i^2=6p.
$$

Then $|\mathcal{S}| = \rho^2 + 1$; and for all $x \neq y$ in $\mathcal{S},\ x \cdot y \neq 0$ mod ρ .

Example ($p = 5$, $|S| = 5^2 + 1 = 26$)

S contains 6 vectors of shape $(5, 1, 1, 1, 1, 1)$; 20 vectors of shape (-3, -3, -3, 1, 1, 1).

S contains 20 vectors of shape $(5, 5, 5, 1, 1, 1)$; 30 vectors of shape (−7, −5, 1, 1, 1, 1); 60 vectors of shape (5, 5, −3, −3, −3, 1); 60 vectors of shape (−7, −3, −3, −3, 1, 1).

Consider a prime $p \equiv 1 \mod 4$. Let S be the set of all $x=(x_1,\ldots,x_6)\in\mathbb{Z}^6$ such that

$$
x_i \equiv 1 \mod 4; \text{ and}
$$

$$
2\sum_i x_i^2=6p.
$$

Then $|\mathcal{S}| = \rho^2 + 1$; and for all $x \neq y$ in $\mathcal{S},\ x \cdot y \neq 0$ mod ρ .

Example ($p = 5$, $|S| = 5^2 + 1 = 26$)

S contains 6 vectors of shape $(5, 1, 1, 1, 1, 1)$; 20 vectors of shape (-3, -3, -3, 1, 1, 1).

Example $(p = 13, |S| = 13^2 + 1 = 170)$

S contains 20 vectors of shape $(5, 5, 5, 1, 1, 1)$; 30 vectors of shape (−7, −5, 1, 1, 1, 1); 60 vectors of shape (5, 5, −3, −3, −3, 1); 60 vectors of shape $(-7, -3, -3, -3, 1, 1)$.

Consider a prime $p \equiv 1 \mod 4$. Let S be the set of all $x=(x_1,\ldots,x_6)\in\mathbb{Z}^6$ such that

 \bullet $x_i \equiv 1 \mod 4$; and

$$
2\sum_i x_i^2=6p.
$$

Then $|\mathcal{S}| = \rho^2 + 1$; and for all $x \neq y$ in $\mathcal{S},\ x \cdot y \neq 0$ mod ρ .

Let $\mathsf{V} = \mathbb{F}_\rho^6$ and consider the quadratic form $Q: \mathsf{V} \to \mathbb{F}_\rho$ defined by $Q(v) = \sum_i v_i^2$. A point $\langle v \rangle$ (i.e. one-dimensional subspace) is singular if $Q(v) = 0$. The quadric associated to Q is the set of singular points. This is the Klein quadric over \mathbb{F}_p .

Reduction mod ρ gives maps $\mathbb{Z} \to \mathbb{F}_\rho$ and $\mathbb{Z}^6 \to \mathbb{F}_\rho^6$ denoted by $X \mapsto \overline{X} = (\overline{X}_1, \ldots, \overline{X}_6).$

The points $\langle \overline{v} \rangle$ for $v \in S$ as above, gives an *ovoid O* in the Klein quadric: $p^2 + 1$ points of the quadric forming a coclique in the collinearity graph of the quadric. $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ E

Consider a prime $p \equiv 1 \mod 4$. Let S be the set of all $x=(x_1,\ldots,x_6)\in\mathbb{Z}^6$ such that

$$
x_i \equiv 1 \mod 4; \text{ and}
$$

$$
2\sum_i x_i^2=6p.
$$

Then $|\mathcal{S}| = \rho^2 + 1$; and for all $x \neq y$ in $\mathcal{S},\ x \cdot y \neq 0$ mod ρ .

Let $\mathsf{V} = \mathbb{F}_\rho^6$ and consider the quadratic form $Q: \mathsf{V} \to \mathbb{F}_\rho$ defined by $Q(v) = \sum_i v_i^2$. A point $\langle v \rangle$ (i.e. one-dimensional subspace) is singular if $Q(v) = 0$. The quadric associated to Q is the set of singular points. This is the Klein quadric over \mathbb{F}_p .

Reduction mod ρ gives maps $\mathbb{Z} \to \mathbb{F}_\rho$ and $\mathbb{Z}^6 \to \mathbb{F}_\rho^6$ denoted by $X \mapsto \overline{X} = (\overline{X}_1, \ldots, \overline{X}_6).$

The points $\langle \overline{v} \rangle$ for $v \in S$ as above, gives an *ovoid O* in the Klein quadric: $p^2 + 1$ points of the quadric forming a coclique in the collinearity graph of the quadric. イロメ イ団 メイミメイミメ E

 QQ

The O_8^+ $\sigma_8^{\scriptscriptstyle (+}(\rho)$ quadric (triality quadric)

Let V be an 8-dimensional vector space over \mathbb{F}_p , with hyperbolic quadratic form $Q: V \to \mathbb{F}_p$. (For p odd, we may take $Q(v) = \sum_i v_i^2$.) The nondegenerate bilinear form associated to Ω is

$$
v\cdot w=Q(v+w)-Q(v)-Q(w).
$$

A point $\langle v \rangle$ (i.e. one-dimensional subspace) is *singular* if $Q(v) = 0$. The quadric associated to Q is the set of singular points. This is the *triality quadric* over \mathbb{F}_p . Two points $\langle v \rangle$, $\langle w \rangle$ of the quadric lie on a line of the quadric iff $v \cdot w = 0$.

An *ovoid* is a set of ρ^3+1 points in the quadric forming a coclique in the collinearity graph of the quadric. These exist for all p (Conway et al. (1988)).

K ロメ K 御 ド K ヨ ド K ヨ

The O_8^+ $\sigma_8^{\scriptscriptstyle (+}(\rho)$ quadric (triality quadric)

Let V be an 8-dimensional vector space over \mathbb{F}_p , with hyperbolic quadratic form $Q: V \to \mathbb{F}_p$. (For p odd, we may take $Q(v) = \sum_i v_i^2$.) The nondegenerate bilinear form associated to Ω is

$$
v\cdot w=Q(v+w)-Q(v)-Q(w).
$$

A point $\langle v \rangle$ (i.e. one-dimensional subspace) is singular if $Q(v) = 0$. The quadric associated to Q is the set of singular points. This is the *triality quadric* over \mathbb{F}_p . Two points $\langle v \rangle$, $\langle w \rangle$ of the quadric lie on a line of the quadric iff $v \cdot w = 0$.

An *ovoid* is a set of ρ^3+1 points in the quadric forming a coclique in the collinearity graph of the quadric. These exist for all p (Conway et al. (1988)).

(ロ) () () () () () ()

The O_8^+ $\sigma_8^{\scriptscriptstyle (+}(\rho)$ quadric (triality quadric)

Let V be an 8-dimensional vector space over \mathbb{F}_p , with hyperbolic quadratic form $Q: V \to \mathbb{F}_p$. (For p odd, we may take $Q(v) = \sum_i v_i^2$.) The nondegenerate bilinear form associated to O is

$$
v\cdot w=Q(v+w)-Q(v)-Q(w).
$$

A point $\langle v \rangle$ (i.e. one-dimensional subspace) is singular if $Q(v) = 0$. The quadric associated to Q is the set of singular points. This is the *triality quadric* over \mathbb{F}_p . Two points $\langle v \rangle$, $\langle w \rangle$ of the quadric lie on a line of the quadric iff $v \cdot w = 0$.

An *ovoid* is a set of $p^3 + 1$ points in the quadric forming a coclique in the collinearity graph of the quadric. These exist for all p (Conway et al. (1988)).

(ロ) () () () () () ()

Define the lattice $E\subset \mathbb{R}^8$ by

$E = \{\frac{1}{2}(x_1, x_2, \ldots, x_8) : x_i \in \mathbb{Z}, x_1 \equiv x_2 \equiv \cdots \equiv x_8 \text{ mod } 2,$ $\sum_i x_i \equiv 0 \mod 4$.

E has 240 *root vectors* (vectors $x \in E$ with minimum $||x||^2 = 2$): 112 vectors of shape $(\pm 1, \pm 1, 0, 0, 0, 0, 0, 0)$; 128 vectors of shape $\frac{1}{2}(\pm 1, \pm 1, \ldots, \pm 1)$ (an even number of '−' signs).

Reduction mod p gives maps $\mathbb{Z} \to \mathbb{F}_p$ and $E \to V = E/pE$ denoted by $\overline{}$. Since $\frac{1}{2} \|x\|^2 \in \mathbb{Z}$ for all $x \in E,$ we have a quadratic form

$$
Q: V \to \mathbb{F}_p, \quad Q(\overline{X}) = \frac{1}{2} ||X||^2.
$$

K ロ ト K 伺 ト K ヨ ト K ヨ ト

Define the lattice $E\subset \mathbb{R}^8$ by

$$
E = \left\{ \frac{1}{2} (x_1, x_2, \ldots, x_8) : x_i \in \mathbb{Z}, \ x_1 \equiv x_2 \equiv \cdots \equiv x_8 \text{ mod } 2, \\ \sum_i x_i \equiv 0 \text{ mod } 4 \right\}.
$$

E has 240 *root vectors* (vectors $x \in E$ with minimum $||x||^2 = 2$): 112 vectors of shape $(\pm 1, \pm 1, 0, 0, 0, 0, 0, 0)$; 128 vectors of shape $\frac{1}{2}(\pm 1, \pm 1, \ldots, \pm 1)$ (an even number of '−' signs).

Reduction mod p gives maps $\mathbb{Z} \to \mathbb{F}_p$ and $E \to V = E/pE$ denoted by $\overline{}$. Since $\frac{1}{2} \|x\|^2 \in \mathbb{Z}$ for all $x \in E,$ we have a quadratic form

$$
Q: V \to \mathbb{F}_p, \quad Q(\overline{X}) = \frac{1}{2} ||X||^2.
$$

 $A \cap \overline{B} \rightarrow A \Rightarrow A \Rightarrow A \Rightarrow B$

Define the lattice $E\subset \mathbb{R}^8$ by

$$
E = \left\{ \frac{1}{2} (x_1, x_2, \dots, x_8) : x_i \in \mathbb{Z}, \ x_1 \equiv x_2 \equiv \dots \equiv x_8 \text{ mod } 2, \\ \sum_i x_i \equiv 0 \text{ mod } 4 \right\}.
$$

E has 240 *root vectors* (vectors $x \in E$ with minimum $||x||^2 = 2$): 112 vectors of shape $(\pm 1, \pm 1, 0, 0, 0, 0, 0, 0)$; 128 vectors of shape $\frac{1}{2}(\pm 1, \pm 1, \ldots, \pm 1)$ (an even number of '−' signs).

Reduction mod p gives maps $\mathbb{Z} \to \mathbb{F}_p$ and $E \to V = E/pE$ denoted by $\overline{}$. Since $\frac{1}{2} \|x\|^2 \in \mathbb{Z}$ for all $x \in E,$ we have a quadratic form

$$
Q: V \to \mathbb{F}_p, \quad Q(\overline{x}) = \frac{1}{2} ||x||^2.
$$

Conway's binary ovoids

Let p be an odd prime. Fix a root, say $e=\frac{1}{2}$ $\frac{1}{2}(1, 1, 1, 1, 1, 1, 1, 1) \in E$.

Let S be the set of vectors $x \in \mathbb{Z}e + 2E \subset E$ such that $\frac{1}{2}||x||^2 = p$. Then $|\mathcal{S}| = 2(p^3+1)$ and $\mathcal S$ consists of p^3+1 pairs $\pm x$.

Reducing these vectors mod *pE* gives

$$
\mathcal{O}=\mathcal{O}_{2,p,e}=\big\{\langle\overline{x}\rangle\,:\,\pm x\in\mathcal{S}\big\},
$$

an ovoid in $E/pE \simeq O_8^+(p)$ (the *binary ovoid*).

 $AB + AB + AB$

Let p be an odd prime. Fix a root, say

$$
e=\tfrac{1}{2}(1,1,1,1,1,1,1,1)\in E.
$$

Let S be the set of vectors $x \in \mathbb{Z}e + 2E \subset E$ such that $\frac{1}{2} \|x\|^2 = p$. Then $|\mathcal{S}| = 2(p^3 + 1)$ and $\mathcal S$ consists of $p^3 + 1$ pairs $\pm x$.

Reducing these vectors mod *pE* gives $\mathcal{O} = \mathcal{O}_{2,p,e} = \left\{ \langle \overline{x} \rangle : \pm x \in \mathcal{S} \right\},\$ an ovoid in $E/pE \simeq O_8^+(p)$ (the *binary ovoid*).

Let p be an odd prime. Fix a root, say

$$
e=\tfrac{1}{2}(1,1,1,1,1,1,1,1)\in E.
$$

Let S be the set of vectors $x \in \mathbb{Z}e + 2E \subset E$ such that $\frac{1}{2} \|x\|^2 = p$. Then $|\mathcal{S}| = 2(p^3 + 1)$ and $\mathcal S$ consists of $p^3 + 1$ pairs $\pm x$.

Reducing these vectors mod pE gives

$$
\mathcal{O}=\mathcal{O}_{2,p,e}=\big\{\langle\overline{x}\rangle\,:\,\pm x\in\mathcal{S}\big\},
$$

an ovoid in $E/pE \simeq O_8^+(p)$ (the *binary ovoid*).

Conway's binary ovoids

Let p be an odd prime. Fix a root, say

$$
e=\tfrac{1}{2}(1,1,1,1,1,1,1,1)\in E.
$$

Let S be the set of vectors $x \in \mathbb{Z}e + 2E \subset E$ such that 1 $\frac{1}{2} \|x\|^2 = p$. Then $|\mathcal{S}| = 2(p^3 + 1)$ and $\mathcal S$ consists of $p^3 + 1$ pairs $\pm x$.

Example ($p = 3$, $|\mathcal{O}| = 3^3 + 1 = 28$)

 ${\cal S}$ contains 28 vector pairs of shape $\pm \frac{1}{2}(-3,-3,1,1,1,1,1,1).$

 $\mathcal S$ contains 70 vector pairs of shape $\pm \frac{1}{2}$ $\frac{1}{2}(-3,-3,-3,-3,1,1,1,1)$; 56 vector pairs of shape $\pm \frac{1}{2}$ $\frac{1}{2}(5, -3, 1, 1, 1, 1, 1, 1).$

重

K ロ ▶ K 御 ▶ K ヨ ▶ K ヨ ▶

Conway's binary ovoids

Let p be an odd prime. Fix a root, say

$$
e=\tfrac{1}{2}(1,1,1,1,1,1,1,1)\in E.
$$

Let S be the set of vectors $x \in \mathbb{Z}e + 2E \subset E$ such that 1 $\frac{1}{2} \|x\|^2 = p$. Then $|\mathcal{S}| = 2(p^3 + 1)$ and $\mathcal S$ consists of $p^3 + 1$ pairs $\pm x$.

Example ($p = 3$, $|\mathcal{O}| = 3^3 + 1 = 28$)

 ${\cal S}$ contains 28 vector pairs of shape $\pm \frac{1}{2}(-3,-3,1,1,1,1,1,1).$

Example ($p = 5, |O| = 5^3 + 1 = 126$)

 ${\cal S}$ contains 70 vector pairs of shape $\pm\frac{1}{2}$ $\frac{1}{2}(-3,-3,-3,-3,1,1,1,1)$; 56 vector pairs of shape $\pm \frac{1}{2}$ $\frac{1}{2}(5, -3, 1, 1, 1, 1, 1, 1).$

 QQ

重

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶

Let $r \neq p$ be odd primes. Fix $u \in E$ such that $\left(\begin{smallmatrix} -\frac{p}{2} \| u \|^2 \end{smallmatrix} \right)$ r $= +1.$ Let S be the set of vectors $x \in \mathbb{Z}$ u + rE \subset E such that $\frac{1}{2}$ ∥ x ∥ $^2 = k(r - k)p$ for some $k \in \{1, 2, \ldots, \frac{r-1}{2}\}$. Then $|S| = 2(p^3+1)$ and S consists of p^3+1 pairs $\pm x$. (Some degenerate cases occur for $r > p$.)

Reducing these vectors mod pE gives

$$
\mathcal{O}=\mathcal{O}_{r,p,u}=\big\{\langle\overline{x}\rangle\,:\,\pm x\in\mathcal{S}\big\},
$$

an ovoid in $E/pE \simeq O_8^+(p)$.

Ovoids isomorphic to $\mathcal{O}_{r,p,\mu}$ (for primes $r \neq p$, including $r = 2$) are the *r-ary ovoids of type* E_8 in $O_8^+(p)$.

→ 伊 ト 4 重 ト 4

Let $r \neq p$ be odd primes. Fix $u \in E$ such that $\left(\begin{smallmatrix} -\frac{p}{2} \| u \|^2 \end{smallmatrix} \right)$ r $= +1.$ Let S be the set of vectors $x \in \mathbb{Z}$ u + rE \subset E such that $\frac{1}{2}$ ∥ x ∥ $^2 = k(r - k)p$ for some $k \in \{1, 2, \ldots, \frac{r-1}{2}\}$. Then $|S| = 2(p^3+1)$ and S consists of p^3+1 pairs $\pm x$. (Some degenerate cases occur for $r > p$.)

Reducing these vectors mod pE gives

$$
\mathcal{O}=\mathcal{O}_{r,p,u}=\left\{\langle\overline{x}\rangle\,:\,\pm x\in\mathcal{S}\right\},\
$$

an ovoid in $E/pE \simeq O_8^+(p)$.

Ovoids isomorphic to $\mathcal{O}_{r,p,\mu}$ (for primes $r \neq p$, including $r = 2$) are the *r-ary ovoids of type* E_8 in $O_8^+(p)$.

 \overline{AB} > \overline{AB} > \overline{AB}

Let $r \neq p$ be odd primes. Fix $u \in E$ such that $\left(\begin{smallmatrix} -\frac{p}{2} \| u \|^2 \end{smallmatrix} \right)$ r $= +1.$ Let S be the set of vectors $x \in \mathbb{Z}$ u + rE \subset E such that $\frac{1}{2}$ ∥ x ∥ $^2 = k(r - k)p$ for some $k \in \{1, 2, \ldots, \frac{r-1}{2}\}$. Then $|S| = 2(p^3+1)$ and S consists of p^3+1 pairs $\pm x$. (Some degenerate cases occur for $r > p$.)

Reducing these vectors mod pE gives

$$
\mathcal{O}=\mathcal{O}_{r,p,u}=\big\{\langle\overline{x}\rangle\,:\,\pm x\in\mathcal{S}\big\},
$$

an ovoid in $E/pE \simeq O_8^+(p)$.

Ovoids isomorphic to $\mathcal{O}_{r,p,\mu}$ (for primes $r \neq p$, including $r = 2$) are the *r-ary ovoids of type* E_8 in $O_8^+(p)$.

 \overline{AB} \rightarrow \overline{B} \rightarrow \overline{AB}

Let $r \neq p$ be odd primes. Fix $u \in E$ such that $\left(\begin{smallmatrix} -\frac{p}{2} \| u \|^2 \end{smallmatrix} \right)$ r $= +1.$ Let S be the set of vectors $x \in \mathbb{Z}$ u + rE \subset E such that $\frac{1}{2}$ ∥ x ∥ $^2 = k(r - k)p$ for some $k \in \{1, 2, \ldots, \frac{r-1}{2}\}$. Then $|S| = 2(p^3+1)$ and S consists of p^3+1 pairs $\pm x$. (Some degenerate cases occur for $r > p$.)

Reducing these vectors mod pE gives

$$
\mathcal{O}=\mathcal{O}_{r,p,u}=\big\{\langle\overline{x}\rangle\,:\,\pm x\in\mathcal{S}\big\},\,
$$

an ovoid in $E/pE \simeq O_8^+(p)$.

Ovoids isomorphic to $\mathcal{O}_{r,p,u}$ (for primes $r \neq p$, including $r = 2$) are the *r-ary ovoids of type* E_8 in $O_8^+(p)$.

 \overline{AB} > \overline{AB} > \overline{AB}

- \bullet For each p, there are infinitely many choices of r, u to choose in constructing $\mathcal{O}_{r,p,\mu}$ but only finitely many ovoids in $O_8^+(\rho)$. How many? How do we know when we have found them all?
- \bullet Let $w(p)$ be the number of isomorphism classes of ovoids of type E_8 in $O^+_8(\rho).$ Does $w(\rho) \to \infty$ as $\rho \to \infty?$ (By Conway et al. (1988), $w(p) \ge 1$.)
- ³ r, p don't really have to be primes. Does anything comparable work in O_8^+ $_{8}^{+}(q)$?
- \bullet Ovoids in $O^+_8(q)$ which lie in an $O_7(q)$ hyperplane, are known only for $q=3^j.$ Why? Is the ovoid in $O_7(3)$ the unique E_8 -type ovoid in $O_7(p)$?
- \bullet Most E_8 -type ovoids should be rigid, i.e. having trivial stabilizer in $PGO_8^+(\rho),$ but no rigid ovoids in $O_8^+(q)$ have been found.
- What is really going on in the construction of E_8 -type ovoids? K ロ ▶ K 個 ▶ K 君 ▶ K 君 ▶

- \bullet For each p, there are infinitely many choices of r, u to choose in constructing $\mathcal{O}_{r,p,\mu}$ but only finitely many ovoids in $O_8^+(\rho)$. How many? How do we know when we have found them all?
- 2 Let $w(p)$ be the number of isomorphism classes of ovoids of type E_8 in $O^+_8(\rho).$ Does $w(\rho) \to \infty$ as $\rho \to \infty?$ (By Conway et al. (1988), $w(p) \ge 1$.)
- \bullet r, p don't really have to be primes. Does anything comparable work in O_8^+ $_{8}^{+}(q)$?
- \bullet Ovoids in $O^+_8(q)$ which lie in an $O_7(q)$ hyperplane, are known only for $q=3^j.$ Why? Is the ovoid in $O_7(3)$ the unique E_8 -type ovoid in $O_7(p)$?
- \bullet Most E_8 -type ovoids should be rigid, i.e. having trivial stabilizer in $PGO_8^+(\rho),$ but no rigid ovoids in $O_8^+(q)$ have been found.
- What is really going on in the construction of E_8 -type ovoids? (ロ) (個) (差) (差)

- \bullet For each p, there are infinitely many choices of r, u to choose in constructing $\mathcal{O}_{r,p,\mu}$ but only finitely many ovoids in $O_8^+(\rho)$. How many? How do we know when we have found them all?
- 2 Let $w(p)$ be the number of isomorphism classes of ovoids of type E_8 in $O^+_8(\rho).$ Does $w(\rho) \to \infty$ as $\rho \to \infty?$ (By Conway et al. (1988), $w(p) \ge 1$.)
- 3 r, p don't really have to be primes. Does anything comparable work in O_8^+ $_{8}^{+}(q)$?
- \bullet Ovoids in $O^+_8(q)$ which lie in an $O_7(q)$ hyperplane, are known only for $q=3^j.$ Why? Is the ovoid in $O_7(3)$ the unique E_8 -type ovoid in $O_7(p)$?
- \bullet Most E_8 -type ovoids should be rigid, i.e. having trivial stabilizer in $PGO_8^+(\rho),$ but no rigid ovoids in $O_8^+(q)$ have been found.
- What is really going on in the construction of E_8 -type ovoids? イロト イ団 トメ ミト イモト

- \bullet For each p, there are infinitely many choices of r, u to choose in constructing $\mathcal{O}_{r,p,\mu}$ but only finitely many ovoids in $O_8^+(\rho)$. How many? How do we know when we have found them all?
- 2 Let $w(p)$ be the number of isomorphism classes of ovoids of type E_8 in $O^+_8(\rho).$ Does $w(\rho) \to \infty$ as $\rho \to \infty?$ (By Conway et al. (1988), $w(p) \ge 1$.)
- 3 r, p don't really have to be primes. Does anything comparable work in O_8^+ $_{8}^{+}(q)$?
- Φ Ovoids in $O^+_8(q)$ which lie in an $O_7(q)$ hyperplane, are known only for $q=3^j.$ Why? Is the ovoid in $O_7(3)$ the unique E_8 -type ovoid in $O_7(p)$?
- \bullet Most E_8 -type ovoids should be rigid, i.e. having trivial stabilizer in $PGO_8^+(\rho),$ but no rigid ovoids in $O_8^+(q)$ have been found.
- What is really going on in the construction of E_8 -type ovoids? (ロ) (個) (差) (差)

- \bullet For each p, there are infinitely many choices of r, u to choose in constructing $\mathcal{O}_{r,p,\mu}$ but only finitely many ovoids in $O_8^+(\rho)$. How many? How do we know when we have found them all?
- 2 Let $w(p)$ be the number of isomorphism classes of ovoids of type E_8 in $O^+_8(\rho).$ Does $w(\rho) \to \infty$ as $\rho \to \infty?$ (By Conway et al. (1988), $w(p) \ge 1$.)
- 3 r, p don't really have to be primes. Does anything comparable work in O_8^+ $_{8}^{+}(q)$?
- Φ Ovoids in $O^+_8(q)$ which lie in an $O_7(q)$ hyperplane, are known only for $q=3^j.$ Why? Is the ovoid in $O_7(3)$ the unique E_8 -type ovoid in $O_7(p)$?
- \bullet Most E_8 -type ovoids should be rigid, i.e. having trivial stabilizer in $PGO_8^+(\rho),$ but no rigid ovoids in $O_8^+(q)$ have been found.
- What is really going on in the construction of E_8 -type ovoids? K ロ ▶ K 御 ▶ K ヨ ▶ K ヨ ▶

- \bullet For each p, there are infinitely many choices of r, u to choose in constructing $\mathcal{O}_{r,p,\mu}$ but only finitely many ovoids in $O_8^+(\rho)$. How many? How do we know when we have found them all?
- 2 Let $w(p)$ be the number of isomorphism classes of ovoids of type E_8 in $O^+_8(\rho).$ Does $w(\rho) \to \infty$ as $\rho \to \infty?$ (By Conway et al. (1988), $w(p) \ge 1$.)
- 3 r, p don't really have to be primes. Does anything comparable work in O_8^+ $_{8}^{+}(q)$?
- Φ Ovoids in $O^+_8(q)$ which lie in an $O_7(q)$ hyperplane, are known only for $q=3^j.$ Why? Is the ovoid in $O_7(3)$ the unique E_8 -type ovoid in $O_7(p)$?
- \bullet Most E_8 -type ovoids should be rigid, i.e. having trivial stabilizer in $PGO_8^+(\rho),$ but no rigid ovoids in $O_8^+(q)$ have been found.
- \bullet What is really going on in the construction of E_8 -type ovoids? おすぼおす 重め

Conjectured number of E_8 -type ovoids

Let $\mathcal{O}_1, \mathcal{O}_2, \ldots, \mathcal{O}_w$ be representatives for the isomorphism types of E_8 -type ovoids in O_8^+ $B_8^+(\rho)$, under $G=PGO_8^+(\rho)$. The number of ovoids isomorphic to \mathcal{O}_i is $[G:G_{\mathcal{O}_i}];$ note that

$$
|G| = |PGO_8^+(p)| = \frac{2}{d}p^{12}(p^6 - 1)(p^4 - 1)^2(p^2 - 1)
$$

where $d = \gcd(p-1, 2)$.

The subgroup $\mathcal{W}(E_8)/\{\pm\mathit{l}\}\cong \mathit{PGO}^+_8(2)\leqslant G$ has order

 $|PGO_8^+(2)| = 348,364,800.$

重

ロトメ 伊 トメ ミトメ ミト

Conjectured number of E_8 -type ovoids

Let $\mathcal{O}_1, \mathcal{O}_2, \ldots, \mathcal{O}_w$ be representatives for the isomorphism types of E_8 -type ovoids in O_8^+ $B_8^+(\rho)$, under $G=PGO_8^+(\rho)$. The number of ovoids isomorphic to \mathcal{O}_i is $[G:G_{\mathcal{O}_i}];$ note that

$$
|G| = |PGO_8^+(p)| = \frac{2}{d}p^{12}(p^6 - 1)(p^4 - 1)^2(p^2 - 1)
$$

where $d = \gcd(p-1, 2)$.

The subgroup $\mathsf{W}(\mathsf{E}_8)/\{\pm\mathsf{I}\}\cong \mathsf{PGO}^+_8(2)\leqslant G$ has order

$$
\vert \textit{PGO}^{+}_8(2) \vert = 348{,}364{,}800.
$$

The stabilizers $G_{\mathcal{O}_i}$ are not necessarily subgroups of $PGO^+_8(2).$ I am not claiming that the terms in this sum are always integers (but in every known case they are).

The cases $p = 2, 3$ are genuine exceptions. (When $p = 3$ the E_8 -type ovoids lie in hyperplanes.)

K ロ ト K 倒 ト K ミ ト K

The stabilizers $G_{\mathcal{O}_i}$ are not necessarily subgroups of $PGO_8^+(2).$ I am not claiming that the terms in this sum are always integers (but in every known case they are).

The cases $p = 2, 3$ are genuine exceptions. (When $p = 3$ the E_8 -type ovoids lie in hyperplanes.)

K ロ ト K 倒 ト K ミ ト K

The stabilizers $G_{\mathcal{O}_i}$ are not necessarily subgroups of $PGO_8^+(2).$ I am not claiming that the terms in this sum are always integers (but in every known case they are).

The cases $p = 2$, 3 are genuine exceptions. (When $p = 3$ the E_8 -type ovoids lie in hyperplanes.)

4 ロ ト 4 母 ト 4 ヨ ト

Corollary

Let $n(p)$ be the number of isomorphism types of ovoids in $O_8^+(p)$. If the Mass Formula holds, then for some absolute constant $C > 0$, $n(p) \geqslant Cp^4 \to \infty$ as $p \to \infty$.

Currently it is known that $n(p) \geq 1$ (Conway et al., 1988).

Verifying the Mass Formula for small p

Strictly speaking, these terms are *lower bounds* found by enumerating r -ary ovoids in $O^+_{\rm 8}(\rho)$ for small r and testing for isomorphism. To compute Aut(\mathcal{O}), use nauty to determine Aut($\Delta(\mathcal{O})$) where $\Delta(\mathcal{O})$ is the associated two-graph. In general Aut(\mathcal{O}) ⊆ Aut($\Delta(\mathcal{O})$), and we check that equality holds in all cases. (イ御) イヨン イヨン

nar

Verifying the Mass Formula for small p

Strictly speaking, these terms are *lower bounds* found by enumerating *r*-ary ovoids in $O^+_{8}(\rho)$ for small r and testing for isomorphism. To compute $Aut(\mathcal{O})$, use nauty to determine Aut($\Delta(\mathcal{O})$) where $\Delta(\mathcal{O})$ is the associated two-graph. In general Aut(\mathcal{O}) ⊂ Aut($\Delta(\mathcal{O})$), and we check that equality holds in all cases.

We call E the ring of integral octaves. The octonion algebra is $\mathbb{O} = \mathbb{R} \otimes_{\mathbb{Z}} E$.

There is an anti-automorphism $x \mapsto x^*$ satisfying

 $(x + y)^* = x^* + y^*;$ $(xy)^* = y^*x^*;$ $xx^* = x^*x = \frac{1}{2}$ $\frac{1}{2}||x||^2$.

In particular, $\frac{1}{2}||xy||^2 = \frac{1}{2}$ $\frac{1}{2}||x||^2 \cdot \frac{1}{2}$ $\frac{1}{2}||y||^2.$

If $\frac{1}{2}||x||^2$ =mn where gcd (m, n) = 1, then x=yz for some y, z∈E with $\frac{1}{2}||y||^2 = m$, $\frac{1}{2}$ $\frac{1}{2}||z||^2$ =n. There are exactly 240 such pairs (y, z) .

重

K ロ ト K 伺 ト K ヨ ト K ヨ ト

We call E the *ring of integral octaves*. The octonion algebra is $\mathbb{O} = \mathbb{R} \otimes_{\mathbb{Z}} E$.

There is an anti-automorphism $x \mapsto x^*$ satisfying

 $(x + y)^* = x^* + y^*;$ $(xy)^* = y^*x^*;$ $xx^* = x^*x = \frac{1}{2}$ $\frac{1}{2}||x||^2$.

In particular, $\frac{1}{2}||xy||^2 = \frac{1}{2}$ $\frac{1}{2}||x||^2 \cdot \frac{1}{2}$ $\frac{1}{2}||y||^2.$

If $\frac{1}{2}||x||^2$ =mn where gcd (m, n) = 1, then x=yz for some y, z∈E with $\frac{1}{2}||y||^2 = m$, $\frac{1}{2}$ $\frac{1}{2}||z||^2$ =n. There are exactly 240 such pairs (y, z) .

E

K ロ ▶ K 御 ▶ K ヨ ▶ K ヨ ▶

We call E the *ring of integral octaves*. The octonion algebra is $\mathbb{O} = \mathbb{R} \otimes_{\mathbb{Z}} E$.

There is an anti-automorphism $x \mapsto x^*$ satisfying

$$
(x + y)^* = x^* + y^*
$$
; $(xy)^* = y^*x^*$; $xx^* = x^*x = \frac{1}{2}||x||^2$.

In particular, $\frac{1}{2}||xy||^2 = \frac{1}{2}$ $\frac{1}{2}||x||^2 \cdot \frac{1}{2}$ $\frac{1}{2}||y||^2$.

If $\frac{1}{2}||x||^2$ =mn where gcd (m, n) = 1, then x=yz for some y, z∈E with $\frac{1}{2}||y||^2 = m$, $\frac{1}{2}$ $\frac{1}{2}||z||^2$ =n. There are exactly 240 such pairs (y, z) .

重

K ロ ト K 伺 ト K ヨ ト K ヨ ト

We call E the *ring of integral octaves*. The octonion algebra is $\mathbb{O} = \mathbb{R} \otimes_{\mathbb{Z}} E$.

There is an anti-automorphism $x \mapsto x^*$ satisfying

$$
(x + y)^* = x^* + y^*
$$
; $(xy)^* = y^*x^*$; $xx^* = x^*x = \frac{1}{2}||x||^2$.

In particular, $\frac{1}{2}||xy||^2 = \frac{1}{2}$ $\frac{1}{2}||x||^2 \cdot \frac{1}{2}$ $\frac{1}{2}||y||^2$.

If $\frac{1}{2}||x||^2$ =mn where gcd (m, n) = 1, then x=yz for some y, z \in E with $\frac{1}{2}||y||^2 = m$, $\frac{1}{2}$ $\frac{1}{2}||z||^2 = n$. There are exactly 240 such pairs (y, z) .

重

K ロ ト K 伺 ト K ヨ ト K ヨ ト

We call E the *ring of integral octaves*. The octonion algebra is $\mathbb{O} = \mathbb{R} \otimes_{\mathbb{Z}} E$.

There is an anti-automorphism $x \mapsto x^*$ satisfying

$$
(x + y)^* = x^* + y^*
$$
; $(xy)^* = y^*x^*$; $xx^* = x^*x = \frac{1}{2}||x||^2$.

In particular, $\frac{1}{2}||xy||^2 = \frac{1}{2}$ $\frac{1}{2}||x||^2 \cdot \frac{1}{2}$ $\frac{1}{2}||y||^2$.

If $\frac{1}{2}||x||^2$ =mn where gcd (m, n) = 1, then x=yz for some y, z \in E with $\frac{1}{2}||y||^2 = m$, $\frac{1}{2}$ $\frac{1}{2}||z||^2$ =n. There are exactly 240 such pairs (y, z) .

É

 \sqrt{d} \rightarrow \sqrt{d} \rightarrow \sqrt{d}

Canonical bijections between E_8 -type ovoids in O_8^+ $_{8}^{+}(p)$

Fix odd primes $r \neq p$ and $u \in E$ such that $\left(\begin{smallmatrix} -\frac{p}{2} \| u \|^2 \end{smallmatrix} \right)$ r $= +1.$

Denote the binary ovoid

$$
\mathcal{O}_{2,p,1}=\big\{\langle\overline{x}\rangle\,:\,\pm x\in\mathbb{Z}+2E,\,\frac{1}{2}\|x\|^2=p\big\}.
$$

An alternative construction of the r-ary ovoid $\mathcal{O}_{r,p,\mu}$ is via the canonical bijection

$$
f:\mathcal{O}_{r,p,u}\rightarrow\mathcal{O}_{2,p,1}
$$

constructed as follows. Given $w \in \mathbb{Z}u + rE$ with 1 $\frac{1}{2}\|x\|^2=k(r-k)p,$ $1\leqslant k\leqslant\frac{r-1}{2},$ we have $W = XV$

for some $x, y \in E$ such that $\frac{1}{2} ||x||^2 = p$ and $\frac{1}{2} ||y||^2 = k(r - k)$. If we also require $x \in \mathbb{Z} + 2E$, then this factorization is unique up to a ± 1 factor and our bijection is

$$
f:\langle\overline{W}\rangle\to\langle\overline{X}\rangle.
$$

 $A \oplus A \times A \oplus A \times A \oplus A$

Canonical bijections between E_8 -type ovoids in O_8^+ 8 (p)

Fix odd primes $r \neq p$ and $u \in E$ such that $\left(\begin{smallmatrix} -\frac{p}{2} \| u \|^2 \end{smallmatrix} \right)$ r $= +1.$

Denote the binary ovoid

$$
\mathcal{O}_{2,p,1}=\big\{\langle\overline{x}\rangle\,:\,\pm x\in\mathbb{Z}+2E,\ \tfrac{1}{2}\|x\|^2=p\big\}.
$$

An alternative construction of the r-ary ovoid $\mathcal{O}_{r,p,\mu}$ is via the canonical bijection

$$
f:\mathcal{O}_{r,p,u}\rightarrow\mathcal{O}_{2,p,1}
$$

constructed as follows. Given $w \in \mathbb{Z}$ u + rE with 1 $\frac{1}{2}\|x\|^2=k(r-k)p,$ $1\leqslant k\leqslant\frac{r-1}{2},$ we have $W = XV$

for some $x, y \in E$ such that $\frac{1}{2} ||x||^2 = p$ and $\frac{1}{2} ||y||^2 = k(r - k)$. If we also require $x \in \mathbb{Z} + 2E$, then this factorization is unique up to a \pm 1 factor and our bijection is

$$
f:\langle\overline{w}\rangle\to\langle\overline{x}\rangle.
$$

 \rightarrow \rightarrow \oplus \rightarrow \rightarrow \oplus \rightarrow

When does $\mathcal{O}_{r,p,\mu}$ lie in an $O_7(p)$ -hyperplane?

The binary ovoid $\mathcal{O} = \mathcal{O}_{2, p, e}$ lies in an $\mathcal{O}_7(p)$ -hyperplane iff $p = 3$. But even this case is rather tricky.

 $A \cap \overline{B} \rightarrow A \Rightarrow A \Rightarrow A \Rightarrow B$

When does $\mathcal{O}_{r,p,\mu}$ lie in an $O_7(p)$ -hyperplane?

The binary ovoid $\mathcal{O} = \mathcal{O}_{2, p, e}$ lies in an $\mathcal{O}_7(p)$ -hyperplane iff $p = 3$. But even this case is rather tricky.

 $AB + 4$

Thank You!

Questions?

È

K ロ ト K 倒 ト K

 $\mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}^d$

目