Counting Ovoids in the Triality Quadric

G. Eric Moorhouse

Department of Mathematics University of Wyoming

RMAC Seminar 12 April 2013

Consider a prime $p \equiv 1 \mod 4$. Let S be the set of all $x = (x_1, \ldots, x_6) \in \mathbb{Z}^6$ such that

$$x_i \equiv 1 \mod 4; and$$

$$\bigcirc \sum_i x_i^2 = 6p.$$

Then $|S| = p^2 + 1$; and for all $x \neq y$ in S, $x \cdot y \not\equiv 0 \mod p$.

Example (p = 5, $|S| = 5^2 + 1 = 26$)

S contains 6 vectors of shape (5, 1, 1, 1, 1, 1); 20 vectors of shape (-3, -3, -3, 1, 1, 1).

Example (p = 13, $|S| = 13^2 + 1 = 170$)

S contains 20 vectors of shape (5,5,5,1,1,1); 30 vectors of shape (-7,-5,1,1,1,1); 60 vectors of shape (5,5,-3,-3,-3,1); 60 vectors of shape (-7,-3,-3,-3,1,1)

Consider a prime $p \equiv 1 \mod 4$. Let S be the set of all $x = (x_1, \ldots, x_6) \in \mathbb{Z}^6$ such that

•
$$x_i \equiv 1 \mod 4$$
; and

$$\bigcirc \sum_i x_i^2 = 6p.$$

Then $|\mathcal{S}| = p^2 + 1$; and for all $x \neq y$ in \mathcal{S} , $x \cdot y \not\equiv 0 \mod p$.

Example (p = 5, $|S| = 5^2 + 1 = 26$)

S contains 6 vectors of shape (5, 1, 1, 1, 1, 1); 20 vectors of shape (-3, -3, -3, 1, 1, 1).

Example (p = 13, $|S| = 13^2 + 1 = 170$)

S contains 20 vectors of shape (5,5,5,1,1,1); 30 vectors of shape (-7,-5,1,1,1,1); 60 vectors of shape (5,5,-3,-3,-3,1); 60 vectors of shape (-7,-3,-3,-3,1,1)

Consider a prime $p \equiv 1 \mod 4$. Let S be the set of all $x = (x_1, \ldots, x_6) \in \mathbb{Z}^6$ such that

$$x_i \equiv 1 \mod 4; and$$

$$\bigcirc \sum_i x_i^2 = 6p.$$

Then $|S| = p^2 + 1$; and for all $x \neq y$ in S, $x \cdot y \not\equiv 0 \mod p$.

Example $(p = 5, |S| = 5^2 + 1 = 26)$

S contains 6 vectors of shape (5, 1, 1, 1, 1, 1); 20 vectors of shape (-3, -3, -3, 1, 1, 1).

Example ($\rho = 13$, $|S| = 13^2 + 1 = 170$)

S contains 20 vectors of shape (5,5,5,1,1,1); 30 vectors of shape (-7,-5,1,1,1,1); 60 vectors of shape (5,5,-3,-3,-3,1); 60 vectors of shape (-7,-3,-3,-3,1,1);

Consider a prime $p \equiv 1 \mod 4$. Let S be the set of all $x = (x_1, \ldots, x_6) \in \mathbb{Z}^6$ such that

$$x_i \equiv 1 \mod 4; and$$

$$\bigcirc \sum_i x_i^2 = 6p.$$

Then $|\mathcal{S}| = p^2 + 1$; and for all $x \neq y$ in \mathcal{S} , $x \cdot y \not\equiv 0 \mod p$.

Example (p = 5, $|S| = 5^2 + 1 = 26$)

S contains 6 vectors of shape (5, 1, 1, 1, 1, 1); 20 vectors of shape (-3, -3, -3, 1, 1, 1).

Example (p = 13, $|S| = 13^2 + 1 = 170$)

S contains 20 vectors of shape (5, 5, 5, 1, 1, 1); 30 vectors of shape (-7, -5, 1, 1, 1, 1); 60 vectors of shape (5, 5, -3, -3, -3, 1); 60 vectors of shape (-7, -3, -3, -3, 1, 1).

Consider a prime $p \equiv 1 \mod 4$. Let S be the set of all $x = (x_1, \ldots, x_6) \in \mathbb{Z}^6$ such that

$$x_i \equiv 1 \mod 4; and$$

$$\bigcirc \sum_i x_i^2 = 6p.$$

Then $|S| = p^2 + 1$; and for all $x \neq y$ in S, $x \cdot y \not\equiv 0 \mod p$.

Let $V = \mathbb{F}_{\rho}^{6}$ and consider the quadratic form $Q : V \to \mathbb{F}_{\rho}$ defined by $Q(v) = \sum_{i} v_{i}^{2}$. A point $\langle v \rangle$ (i.e. one-dimensional subspace) is *singular* if Q(v) = 0. The *quadric* associated to Q is the set of singular points. This is the *Klein quadric* over \mathbb{F}_{ρ} .

Reduction mod p gives maps $\mathbb{Z} \to \mathbb{F}_p$ and $\mathbb{Z}^6 \to \mathbb{F}_p^6$ denoted by $x \mapsto \overline{x} = (\overline{x}_1, \dots, \overline{x}_6).$

The points $\langle \overline{v} \rangle$ for $v \in S$ as above, gives an *ovoid* \mathcal{O} in the Klein quadric: $p^2 + 1$ points of the quadric forming a coclique in the collinearity graph of the quadric.

Consider a prime $p \equiv 1 \mod 4$. Let S be the set of all $x = (x_1, \ldots, x_6) \in \mathbb{Z}^6$ such that

$$x_i \equiv 1 \mod 4; and$$

$$\bigcirc \sum_i x_i^2 = 6p.$$

Then $|S| = p^2 + 1$; and for all $x \neq y$ in S, $x \cdot y \not\equiv 0 \mod p$.

Let $V = \mathbb{F}_{\rho}^{6}$ and consider the quadratic form $Q : V \to \mathbb{F}_{\rho}$ defined by $Q(v) = \sum_{i} v_{i}^{2}$. A point $\langle v \rangle$ (i.e. one-dimensional subspace) is *singular* if Q(v) = 0. The *quadric* associated to Q is the set of singular points. This is the *Klein quadric* over \mathbb{F}_{ρ} .

Reduction mod p gives maps $\mathbb{Z} \to \mathbb{F}_p$ and $\mathbb{Z}^6 \to \mathbb{F}_p^6$ denoted by $x \mapsto \overline{x} = (\overline{x}_1, \dots, \overline{x}_6).$

The points $\langle \overline{v} \rangle$ for $v \in S$ as above, gives an *ovoid* \mathcal{O} in the Klein quadric: $p^2 + 1$ points of the quadric forming a coclique in the collinearity graph of the quadric.

The $O_8^+(p)$ quadric (triality quadric)

Let *V* be an 8-dimensional vector space over \mathbb{F}_p , with hyperbolic quadratic form $Q: V \to \mathbb{F}_p$. (For *p* odd, we may take $Q(v) = \sum_i v_i^2$.) The nondegenerate bilinear form associated to *Q* is

$$v \cdot w = Q(v + w) - Q(v) - Q(w).$$

A point $\langle v \rangle$ (i.e. one-dimensional subspace) is *singular* if Q(v) = 0. The *quadric* associated to Q is the set of singular points. This is the *triality quadric* over \mathbb{F}_p . Two points $\langle v \rangle, \langle w \rangle$ of the quadric lie on a line of the quadric iff $v \cdot w = 0$.

An *ovoid* is a set of $p^3 + 1$ points in the quadric forming a coclique in the collinearity graph of the quadric. These exist for all p (Conway et al. (1988)).

・ 日 ト ・ 日 ト ・ 田 ト ・

The $O_8^+(p)$ quadric (triality quadric)

Let *V* be an 8-dimensional vector space over \mathbb{F}_p , with hyperbolic quadratic form $Q: V \to \mathbb{F}_p$. (For *p* odd, we may take $Q(v) = \sum_i v_i^2$.) The nondegenerate bilinear form associated to *Q* is

$$\mathbf{v}\cdot\mathbf{w}=\mathbf{Q}(\mathbf{v}+\mathbf{w})-\mathbf{Q}(\mathbf{v})-\mathbf{Q}(\mathbf{w}).$$

A point $\langle v \rangle$ (i.e. one-dimensional subspace) is *singular* if Q(v) = 0. The *quadric* associated to Q is the set of singular points. This is the *triality quadric* over \mathbb{F}_p . Two points $\langle v \rangle, \langle w \rangle$ of the quadric lie on a line of the quadric iff $v \cdot w = 0$.

An *ovoid* is a set of $p^3 + 1$ points in the quadric forming a coclique in the collinearity graph of the quadric. These exist for all p (Conway et al. (1988)).

・ 日 ト ・ 日 ト ・ 田 ト ・

The $O_8^+(p)$ quadric (triality quadric)

Let *V* be an 8-dimensional vector space over \mathbb{F}_p , with hyperbolic quadratic form $Q: V \to \mathbb{F}_p$. (For *p* odd, we may take $Q(v) = \sum_i v_i^2$.) The nondegenerate bilinear form associated to *Q* is

$$\mathbf{v}\cdot\mathbf{w}=\mathbf{Q}(\mathbf{v}+\mathbf{w})-\mathbf{Q}(\mathbf{v})-\mathbf{Q}(\mathbf{w}).$$

A point $\langle v \rangle$ (i.e. one-dimensional subspace) is *singular* if Q(v) = 0. The *quadric* associated to Q is the set of singular points. This is the *triality quadric* over \mathbb{F}_{p} . Two points $\langle v \rangle, \langle w \rangle$ of the quadric lie on a line of the quadric iff $v \cdot w = 0$.

An *ovoid* is a set of $p^3 + 1$ points in the quadric forming a coclique in the collinearity graph of the quadric. These exist for all p (Conway et al. (1988)).

(4月) トイヨト

The E₈ Root Lattice

Define the lattice $E \subset \mathbb{R}^8$ by

$E = \left\{ \frac{1}{2} (x_1, x_2, \dots, x_8) : x_i \in \mathbb{Z}, \ x_1 \equiv x_2 \equiv \dots \equiv x_8 \text{ mod } 2, \\ \sum_i x_i \equiv 0 \text{ mod } 4 \right\}.$

E has 240 *root vectors* (vectors $x \in E$ with minimum $||x||^2 = 2$): 112 vectors of shape $(\pm 1, \pm 1, 0, 0, 0, 0, 0, 0)$; 128 vectors of shape $\frac{1}{2}(\pm 1, \pm 1, \dots, \pm 1)$ (an even number of '-' signs).

Reduction mod *p* gives maps $\mathbb{Z} \to \mathbb{F}_p$ and $E \to V = E/pE$ denoted by $\overline{}$. Since $\frac{1}{2} ||x||^2 \in \mathbb{Z}$ for all $x \in E$, we have a quadratic form

$$Q: V \to \mathbb{F}_{\rho}, \quad Q(\overline{x}) = \frac{1}{2} \|x\|^2$$

(本語) とくほう く

The E₈ Root Lattice

Define the lattice $E \subset \mathbb{R}^8$ by

$$E = \left\{ \frac{1}{2} (x_1, x_2, \dots, x_8) : x_i \in \mathbb{Z}, \ x_1 \equiv x_2 \equiv \dots \equiv x_8 \text{ mod } 2, \\ \sum_i x_i \equiv 0 \text{ mod } 4 \right\}.$$

E has 240 *root vectors* (vectors $x \in E$ with minimum $||x||^2 = 2$): 112 vectors of shape $(\pm 1, \pm 1, 0, 0, 0, 0, 0, 0)$; 128 vectors of shape $\frac{1}{2}(\pm 1, \pm 1, \dots, \pm 1)$ (an even number of '-' signs).

Reduction mod *p* gives maps $\mathbb{Z} \to \mathbb{F}_p$ and $E \to V = E/pE$ denoted by $\overline{}$. Since $\frac{1}{2} ||x||^2 \in \mathbb{Z}$ for all $x \in E$, we have a quadratic form

$$Q: V \to \mathbb{F}_{p}, \quad Q(\overline{x}) = \frac{1}{2} \|x\|^{2}$$

The E₈ Root Lattice

Define the lattice $E \subset \mathbb{R}^8$ by

$$E = \left\{ \frac{1}{2} (x_1, x_2, \dots, x_8) : x_i \in \mathbb{Z}, \ x_1 \equiv x_2 \equiv \dots \equiv x_8 \text{ mod } 2, \\ \sum_i x_i \equiv 0 \text{ mod } 4 \right\}.$$

E has 240 *root vectors* (vectors $x \in E$ with minimum $||x||^2 = 2$): 112 vectors of shape $(\pm 1, \pm 1, 0, 0, 0, 0, 0, 0)$; 128 vectors of shape $\frac{1}{2}(\pm 1, \pm 1, \dots, \pm 1)$ (an even number of '-' signs).

Reduction mod *p* gives maps $\mathbb{Z} \to \mathbb{F}_p$ and $E \to V = E/pE$ denoted by $\overline{}$. Since $\frac{1}{2} ||x||^2 \in \mathbb{Z}$ for all $x \in E$, we have a quadratic form

$$Q: V \to \mathbb{F}_{\rho}, \quad Q(\overline{x}) = \overline{\frac{1}{2} \|x\|^2}.$$

Let *p* be an odd prime. Fix a root, say $e = \frac{1}{2} (1, 1, 1, 1, 1, 1, 1, 1) \in E.$

Let S be the set of vectors $x \in \mathbb{Z}e + 2E \subset E$ such that $\frac{1}{2}||x||^2 = p$. Then $|S| = 2(p^3+1)$ and S consists of $p^3 + 1$ pairs $\pm x$.

Reducing these vectors mod *pE* gives

$$\mathcal{O} = \mathcal{O}_{2,p,e} = \{\langle \overline{X} \rangle : \pm X \in \mathcal{S} \},\$$

an ovoid in $E/pE \simeq O_8^+(p)$ (the *binary ovoid*).

4 ∰ ► < ∃ ►</p>

Let *p* be an odd prime. Fix a root, say

$$e = \frac{1}{2}(1, 1, 1, 1, 1, 1, 1, 1, 1) \in E.$$

Let S be the set of vectors $x \in \mathbb{Z}e + 2E \subset E$ such that $\frac{1}{2}||x||^2 = p$. Then $|S| = 2(p^3+1)$ and S consists of $p^3 + 1$ pairs $\pm x$.

Reducing these vectors mod *pE* gives

$$\mathcal{O} = \mathcal{O}_{2,\rho,e} = \big\{ \langle \overline{x} \rangle : \pm x \in \mathcal{S} \big\},$$

an ovoid in $E/pE \simeq O_8^+(p)$ (the *binary ovoid*).

Let *p* be an odd prime. Fix a root, say

$$e = \frac{1}{2}(1, 1, 1, 1, 1, 1, 1, 1) \in E$$
.

Let S be the set of vectors $x \in \mathbb{Z}e + 2E \subset E$ such that $\frac{1}{2}||x||^2 = p$. Then $|S| = 2(p^3+1)$ and S consists of $p^3 + 1$ pairs $\pm x$.

Reducing these vectors mod *pE* gives

$$\mathcal{O} = \mathcal{O}_{2,p,e} = \big\{ \langle \overline{x} \rangle \, : \, \pm x \in \mathcal{S} \big\},$$

an ovoid in $E/pE \simeq O_8^+(p)$ (the *binary ovoid*).

Conway's binary ovoids

Let *p* be an odd prime. Fix a root, say

$$e = \frac{1}{2}(1, 1, 1, 1, 1, 1, 1, 1) \in E$$
.

Let S be the set of vectors $x \in \mathbb{Z}e + 2E \subset E$ such that $\frac{1}{2}||x||^2 = p$. Then $|S| = 2(p^3+1)$ and S consists of p^3+1 pairs $\pm x$.

Example (p = 3, $|O| = 3^3 + 1 = 28$)

S contains 28 vector pairs of shape $\pm \frac{1}{2}(-3, -3, 1, 1, 1, 1, 1, 1)$.

Example (p = 5, $|O| = 5^3 + 1 = 126$)

S contains 70 vector pairs of shape $\pm \frac{1}{2}(-3, -3, -3, -3, 1, 1, 1, 1)$ 56 vector pairs of shape $\pm \frac{1}{2}(5, -3, 1, 1, 1, 1, 1, 1)$.

э

・ロト ・四ト ・ヨト ・ヨト

Conway's binary ovoids

Let *p* be an odd prime. Fix a root, say

$$e = \frac{1}{2}(1, 1, 1, 1, 1, 1, 1, 1) \in E$$
.

Let S be the set of vectors $x \in \mathbb{Z}e + 2E \subset E$ such that $\frac{1}{2}||x||^2 = p$. Then $|S| = 2(p^3+1)$ and S consists of p^3+1 pairs $\pm x$.

Example (p = 3, $|O| = 3^3 + 1 = 28$)

S contains 28 vector pairs of shape $\pm \frac{1}{2}(-3, -3, 1, 1, 1, 1, 1, 1)$.

Example (p = 5, $|O| = 5^3 + 1 = 126$)

S contains 70 vector pairs of shape $\pm \frac{1}{2}(-3, -3, -3, -3, -3, 1, 1, 1, 1)$; 56 vector pairs of shape $\pm \frac{1}{2}(5, -3, 1, 1, 1, 1, 1, 1)$.

イロト イロト イヨト

Reducing these vectors mod *pE* gives

$$\mathcal{O} = \mathcal{O}_{r,p,u} = \big\{ \langle \overline{x} \rangle : \pm x \in \mathcal{S} \big\},$$

an ovoid in $E/pE \simeq O_8^+(p)$.

Ovoids isomorphic to $\mathcal{O}_{r,p,u}$ (for primes $r \neq p$, including r = 2) are the *r*-ary ovoids of type E_8 in $O_8^+(p)$.

(日本) (日本)

Reducing these vectors mod *pE* gives

$$\mathcal{O} = \mathcal{O}_{r,p,u} = \big\{ \langle \overline{x} \rangle : \pm x \in \mathcal{S} \big\},$$

an ovoid in $E/pE \simeq O_8^+(p)$.

Ovoids isomorphic to $\mathcal{O}_{r,p,u}$ (for primes $r \neq p$, including r = 2) are the *r-ary ovoids of type* E_8 in $O_8^+(p)$.

(日本) (日本)

Reducing these vectors mod *pE* gives

$$\mathcal{O} = \mathcal{O}_{r,p,u} = \{\langle \overline{x} \rangle : \pm x \in \mathcal{S}\},\$$

an ovoid in $E/pE \simeq O_8^+(p)$.

Ovoids isomorphic to $\mathcal{O}_{r,p,u}$ (for primes $r \neq p$, including r = 2) are the *r*-ary ovoids of type E_8 in $O_8^+(p)$.

A (2) < A (2) < A (2) < A (2) </p>

Reducing these vectors mod *pE* gives

$$\mathcal{O} = \mathcal{O}_{r,p,u} = \big\{ \langle \overline{x} \rangle : \pm x \in \mathcal{S} \big\},$$

an ovoid in $E/pE \simeq O_8^+(p)$.

Ovoids isomorphic to $\mathcal{O}_{r,p,u}$ (for primes $r \neq p$, including r = 2) are the *r*-ary ovoids of type E_8 in $O_8^+(p)$.

(周) (ヨ) (

- For each *p*, there are infinitely many choices of *r*, *u* to choose in constructing *O*_{*r*,*p*,*u*} but only finitely many ovoids in *O*⁺₈(*p*). How many? How do we know when we have found them all?
- 2 Let w(p) be the number of isomorphism classes of ovoids of type E₈ in O⁺₈(p). Does w(p) → ∞ as p → ∞? (By Conway et al. (1988), w(p) ≥ 1.)
- If r, p don't really have to be primes. Does anything comparable work in $O_8^+(q)$?
- Ovoids in $O_8^+(q)$ which lie in an $O_7(q)$ hyperplane, are known only for $q = 3^j$. Why? Is the ovoid in $O_7(3)$ the unique E_8 -type ovoid in $O_7(p)$?
- Most *E*₈-type ovoids should be rigid, i.e. having trivial stabilizer in *PGO*⁺₈(*p*), but no rigid ovoids in *O*⁺₈(*q*) have been found.
- What is really going on in the construction of E₈-type ovoids?

- For each *p*, there are infinitely many choices of *r*, *u* to choose in constructing *O*_{*r*,*p*,*u*} but only finitely many ovoids in *O*⁺₈(*p*). How many? How do we know when we have found them all?
- 2 Let w(p) be the number of isomorphism classes of ovoids of type E₈ in O⁺₈(p). Does w(p) → ∞ as p → ∞? (By Conway et al. (1988), w(p) ≥ 1.)
- If r, p don't really have to be primes. Does anything comparable work in $O_8^+(q)$?
- Ovoids in $O_8^+(q)$ which lie in an $O_7(q)$ hyperplane, are known only for $q = 3^j$. Why? Is the ovoid in $O_7(3)$ the unique E_8 -type ovoid in $O_7(p)$?
- Most E_8 -type ovoids should be rigid, i.e. having trivial stabilizer in $PGO_8^+(p)$, but no rigid ovoids in $O_8^+(q)$ have been found.
- What is really going on in the construction of E₈-type ovoids?

- For each *p*, there are infinitely many choices of *r*, *u* to choose in constructing *O*_{*r*,*p*,*u*} but only finitely many ovoids in *O*⁺₈(*p*). How many? How do we know when we have found them all?
- 2 Let w(p) be the number of isomorphism classes of ovoids of type E₈ in O⁺₈(p). Does w(p) → ∞ as p → ∞? (By Conway et al. (1988), w(p) ≥ 1.)
- If r, p don't really have to be primes. Does anything comparable work in $O_8^+(q)$?
- Ovoids in $O_8^+(q)$ which lie in an $O_7(q)$ hyperplane, are known only for $q = 3^j$. Why? Is the ovoid in $O_7(3)$ the unique E_8 -type ovoid in $O_7(p)$?
- Most E_8 -type ovoids should be rigid, i.e. having trivial stabilizer in $PGO_8^+(p)$, but no rigid ovoids in $O_8^+(q)$ have been found.
- What is really going on in the construction of E₈-type ovoids?

- For each *p*, there are infinitely many choices of *r*, *u* to choose in constructing *O*_{*r*,*p*,*u*} but only finitely many ovoids in *O*⁺₈(*p*). How many? How do we know when we have found them all?
- 2 Let w(p) be the number of isomorphism classes of ovoids of type E₈ in O⁺₈(p). Does w(p) → ∞ as p → ∞? (By Conway et al. (1988), w(p) ≥ 1.)
- If r, p don't really have to be primes. Does anything comparable work in $O_8^+(q)$?
- Ovoids in $O_8^+(q)$ which lie in an $O_7(q)$ hyperplane, are known only for $q = 3^j$. Why? Is the ovoid in $O_7(3)$ the unique E_8 -type ovoid in $O_7(p)$?
- Most *E*₈-type ovoids should be rigid, i.e. having trivial stabilizer in *PGO*⁺₈(*p*), but no rigid ovoids in *O*⁺₈(*q*) have been found.
- What is really going on in the construction of E₈-type ovoids?

- For each *p*, there are infinitely many choices of *r*, *u* to choose in constructing *O*_{*r*,*p*,*u*} but only finitely many ovoids in *O*⁺₈(*p*). How many? How do we know when we have found them all?
- 2 Let w(p) be the number of isomorphism classes of ovoids of type E₈ in O⁺₈(p). Does w(p) → ∞ as p → ∞? (By Conway et al. (1988), w(p) ≥ 1.)
- If r, p don't really have to be primes. Does anything comparable work in $O_8^+(q)$?
- Ovoids in $O_8^+(q)$ which lie in an $O_7(q)$ hyperplane, are known only for $q = 3^j$. Why? Is the ovoid in $O_7(3)$ the unique E_8 -type ovoid in $O_7(p)$?
- Solution Most E_8 -type ovoids should be rigid, i.e. having trivial stabilizer in $PGO_8^+(p)$, but no rigid ovoids in $O_8^+(q)$ have been found.
- What is really going on in the construction of *E*₈-type ovoids?

- For each *p*, there are infinitely many choices of *r*, *u* to choose in constructing *O_{r,p,u}* but only finitely many ovoids in *O*⁺₈(*p*). How many? How do we know when we have found them all?
- 2 Let w(p) be the number of isomorphism classes of ovoids of type E₈ in O⁺₈(p). Does w(p) → ∞ as p → ∞? (By Conway et al. (1988), w(p) ≥ 1.)
- r, p don't really have to be primes. Does anything comparable work in $O_8^+(q)$?
- Ovoids in $O_8^+(q)$ which lie in an $O_7(q)$ hyperplane, are known only for $q = 3^j$. Why? Is the ovoid in $O_7(3)$ the unique E_8 -type ovoid in $O_7(p)$?
- Solution Most E_8 -type ovoids should be rigid, i.e. having trivial stabilizer in $PGO_8^+(p)$, but no rigid ovoids in $O_8^+(q)$ have been found.
- What is really going on in the construction of *E*₈-type ovoids?

Conjectured number of E₈-type ovoids

Let $\mathcal{O}_1, \mathcal{O}_2, \ldots, \mathcal{O}_w$ be representatives for the isomorphism types of E_8 -type ovoids in $\mathcal{O}_8^+(p)$, under $G = PGO_8^+(p)$. The number of ovoids isomorphic to \mathcal{O}_i is $[G : G_{\mathcal{O}_i}]$; note that

$$|G| = |PGO_8^+(p)| = \frac{2}{d}p^{12}(p^6 - 1)(p^4 - 1)^2(p^2 - 1)$$

where d = gcd(p - 1, 2).

The subgroup $W(E_8)/\{\pm I\}\cong PGO_8^+(2)\leqslant G$ has order

 $|PGO_8^+(2)| = 348,364,800.$

- 4 周 ト 4 ヨ ト 4 ヨ ト

Let $\mathcal{O}_1, \mathcal{O}_2, \ldots, \mathcal{O}_w$ be representatives for the isomorphism types of E_8 -type ovoids in $\mathcal{O}_8^+(p)$, under $G = PG\mathcal{O}_8^+(p)$. The number of ovoids isomorphic to \mathcal{O}_i is $[G : G_{\mathcal{O}_i}]$; note that

$$|G| = |PGO_8^+(p)| = \frac{2}{d}p^{12}(p^6 - 1)(p^4 - 1)^2(p^2 - 1)$$

where d = gcd(p - 1, 2).

The subgroup $W(E_8)/\{\pm I\} \cong PGO_8^+(2) \leqslant G$ has order

$$|PGO_8^+(2)| = 348,364,800.$$

The stabilizers $G_{\mathcal{O}_i}$ are not necessarily subgroups of $PGO_8^+(2)$. I am not claiming that the terms in this sum are always integers (but in every known case they are).

The cases p = 2, 3 are genuine exceptions. (When p = 3 the E_8 -type ovoids lie in hyperplanes.)

・ ロ ト ・ 四 ト ・ 回 ト ・

Conjectured Mass Formula
For
$$p \ge 5$$
,

$$\sum_{i=1}^{w(p)} [G: G_{\mathcal{O}_i}] = \frac{|G|(p^4 + 239)}{4|PGO_8^+(2)|};$$
i.e.

$$\frac{|PGO_8^+(2)|}{|G_{\mathcal{O}_1}|} + \frac{|PGO_8^+(2)|}{|G_{\mathcal{O}_2}|} + \dots + \frac{|PGO_8^+(2)|}{|G_{\mathcal{O}_w}|} = \frac{p^4 + 239}{4}.$$

The stabilizers $G_{\mathcal{O}_i}$ are not necessarily subgroups of $PGO_8^+(2)$. I am not claiming that the terms in this sum are always integers (but in every known case they are).

The cases p = 2, 3 are genuine exceptions. (When p = 3 the E_8 -type ovoids lie in hyperplanes.)

Conjectured Mass Formula
For
$$p \ge 5$$
,

$$\sum_{i=1}^{w(p)} [G: G_{\mathcal{O}_i}] = \frac{|G|(p^4 + 239)}{4|PGO_8^+(2)|};$$
i.e.

$$\frac{|PGO_8^+(2)|}{|G_{\mathcal{O}_1}|} + \frac{|PGO_8^+(2)|}{|G_{\mathcal{O}_2}|} + \dots + \frac{|PGO_8^+(2)|}{|G_{\mathcal{O}_w}|} = \frac{p^4 + 239}{4}.$$

The stabilizers $G_{\mathcal{O}_i}$ are not necessarily subgroups of $PGO_8^+(2)$. I am not claiming that the terms in this sum are always integers (but in every known case they are).

The cases p = 2, 3 are genuine exceptions. (When p = 3 the E_8 -type ovoids lie in hyperplanes.)

Corollary

Let n(p) be the number of isomorphism types of ovoids in $O_8^+(p)$. If the Mass Formula holds, then for some absolute constant C > 0, $n(p) \ge Cp^4 \to \infty$ as $p \to \infty$.

Currently it is known that $n(p) \ge 1$ (Conway et al., 1988).

Verifying the Mass Formula for small ho

р	w(p)	Mass Formula
5	2	$96+120 = 216 = \frac{5^4+239}{4}$
7	2	$120 + 540 = 660 = \frac{7^4 + 239}{4}$
11	4	$120 + 120 + 960 + 2520 = 3720 = \frac{11^4 + 239}{4}$
13	4	$120+1080+1680+4320 = 7200 = \frac{13^4+239}{4}$
17	7	$120+120+540+960+3360+4320+11520 = 20940 = \frac{17^4+239}{4}$
19	6	$120+120+1080+7560+8640+15120 = 32640 = \frac{19^4+239}{4}$
23	10	$\begin{array}{r} 120 + 120 + 120 + 540 + 960 + 2520 + 3360 \\ + 7560 + 20160 + 34560 = 70020 = \frac{23^4 + 239}{4} \end{array}$

Strictly speaking, these terms are *lower bounds* found by enumerating *r*-ary ovoids in $\mathcal{O}_8^+(p)$ for small *r* and testing for isomorphism. To compute Aut(\mathcal{O}), use nauty to determine Aut($\Delta(\mathcal{O})$) where $\Delta(\mathcal{O})$ is the associated two-graph. In general Aut(\mathcal{O}) \subseteq Aut($\Delta(\mathcal{O})$), and we check that equality holds in all cases.

Verifying the Mass Formula for small p

р	w(p)	Mass Formula
5	2	$96+120 = 216 = \frac{5^4+239}{4}$
7	2	$120 + 540 = 660 = \frac{7^4 + 239}{4}$
11	4	$120 + 120 + 960 + 2520 = 3720 = \frac{11^4 + 239}{4}$
13	4	$120+1080+1680+4320 = 7200 = \frac{13^4+239}{4}$
17	7	$120+120+540+960+3360+4320+11520 = 20940 = \frac{17^4+239}{4}$
19	6	$120+120+1080+7560+8640+15120 = 32640 = \frac{19^4+239}{4}$
23	10	$\begin{array}{r} 120 + 120 + 120 + 540 + 960 + 2520 + 3360 \\ + 7560 + 20160 + 34560 = 70020 = \frac{23^4 + 239}{4} \end{array}$

Strictly speaking, these terms are *lower bounds* found by enumerating *r*-ary ovoids in $O_8^+(p)$ for small *r* and testing for isomorphism. To compute Aut(\mathcal{O}), use nauty to determine Aut($\Delta(\mathcal{O})$) where $\Delta(\mathcal{O})$ is the associated two-graph. In general Aut(\mathcal{O}) \subseteq Aut($\Delta(\mathcal{O})$), and we check that equality holds in all cases.

The Integral Octaves

We may regard *E* as a nonassociative ring with identity. (There are 28800 ways to do this.) The 240 root vectors become the group E^{\times} of units in this ring.

We call *E* the *ring of integral octaves*. The octonion algebra is $\mathbb{O} = \mathbb{R} \otimes_{\mathbb{Z}} E$.

There is an anti-automorphism $x \mapsto x^*$ satisfying

$$(x + y)^* = x^* + y^*;$$
 $(xy)^* = y^* x^*;$ $xx^* = x^* x = \frac{1}{2} ||x||^2.$

In particular, $\frac{1}{2} \|xy\|^2 = \frac{1}{2} \|x\|^2 \cdot \frac{1}{2} \|y\|^2$.

If $\frac{1}{2}||x||^2 = mn$ where gcd(m, n) = 1, then x = yz for some $y, z \in E$ with $\frac{1}{2}||y||^2 = m$, $\frac{1}{2}||z||^2 = n$. There are exactly 240 such pairs (y, z).

イロト イヨト イヨト イヨ

The Integral Octaves

We may regard *E* as a nonassociative ring with identity. (There are 28800 ways to do this.) The 240 root vectors become the group E^{\times} of units in this ring.

We call *E* the *ring of integral octaves*. The octonion algebra is $\mathbb{O} = \mathbb{R} \otimes_{\mathbb{Z}} E$.

There is an anti-automorphism $x \mapsto x^*$ satisfying

$$(x + y)^* = x^* + y^*;$$
 $(xy)^* = y^*x^*;$ $xx^* = x^*x = \frac{1}{2}||x||^2.$

In particular, $\frac{1}{2} \|xy\|^2 = \frac{1}{2} \|x\|^2 \cdot \frac{1}{2} \|y\|^2$.

If $\frac{1}{2}||x||^2 = mn$ where gcd(m, n) = 1, then x = yz for some $y, z \in E$ with $\frac{1}{2}||y||^2 = m$, $\frac{1}{2}||z||^2 = n$. There are exactly 240 such pairs (y, z).

イロト イヨト イヨト イヨト

We may regard *E* as a nonassociative ring with identity. (There are 28800 ways to do this.) The 240 root vectors become the group E^{\times} of units in this ring.

We call *E* the *ring of integral octaves*. The octonion algebra is $\mathbb{O} = \mathbb{R} \otimes_{\mathbb{Z}} E$.

There is an anti-automorphism $x \mapsto x^*$ satisfying

$$(x + y)^* = x^* + y^*;$$
 $(xy)^* = y^* x^*;$ $xx^* = x^* x = \frac{1}{2} ||x||^2.$

In particular, $\frac{1}{2} \|xy\|^2 = \frac{1}{2} \|x\|^2 \cdot \frac{1}{2} \|y\|^2$.

If $\frac{1}{2}||x||^2 = mn$ where gcd(m, n) = 1, then x = yz for some $y, z \in E$ with $\frac{1}{2}||y||^2 = m$, $\frac{1}{2}||z||^2 = n$. There are exactly 240 such pairs (y, z).

(4回) (4回) (4回)

We may regard *E* as a nonassociative ring with identity. (There are 28800 ways to do this.) The 240 root vectors become the group E^{\times} of units in this ring.

We call *E* the *ring of integral octaves*. The octonion algebra is $\mathbb{O} = \mathbb{R} \otimes_{\mathbb{Z}} E$.

There is an anti-automorphism $x \mapsto x^*$ satisfying

$$(x + y)^* = x^* + y^*;$$
 $(xy)^* = y^*x^*;$ $xx^* = x^*x = \frac{1}{2}||x||^2.$

In particular, $\frac{1}{2} \|xy\|^2 = \frac{1}{2} \|x\|^2 \cdot \frac{1}{2} \|y\|^2$.

If $\frac{1}{2}||x||^2 = mn$ where gcd(m, n) = 1, then x = yz for some $y, z \in E$ with $\frac{1}{2}||y||^2 = m$, $\frac{1}{2}||z||^2 = n$. There are exactly 240 such pairs (y, z).

1 A P 1 3 5 1

We may regard *E* as a nonassociative ring with identity. (There are 28800 ways to do this.) The 240 root vectors become the group E^{\times} of units in this ring.

We call *E* the *ring of integral octaves*. The octonion algebra is $\mathbb{O} = \mathbb{R} \otimes_{\mathbb{Z}} E$.

There is an anti-automorphism $x \mapsto x^*$ satisfying

$$(x + y)^* = x^* + y^*;$$
 $(xy)^* = y^*x^*;$ $xx^* = x^*x = \frac{1}{2}||x||^2.$

In particular, $\frac{1}{2} \|xy\|^2 = \frac{1}{2} \|x\|^2 \cdot \frac{1}{2} \|y\|^2$.

If $\frac{1}{2}||x||^2 = mn$ where gcd(m, n) = 1, then x = yz for some $y, z \in E$ with $\frac{1}{2}||y||^2 = m$, $\frac{1}{2}||z||^2 = n$. There are exactly 240 such pairs (y, z).

Canonical bijections between E_8 -type ovoids in $O_8^+(p)$

Fix odd primes $r \neq p$ and $u \in E$ such that $\begin{pmatrix} -\frac{p}{2} ||u||^2 \\ r \end{pmatrix} = +1$.

Denote the binary ovoid

$$\mathcal{O}_{2,p,1} = \left\{ \langle \overline{x} \rangle \ : \ \pm x \in \mathbb{Z} + 2E, \ \frac{1}{2} \|x\|^2 = p \right\}.$$

An alternative construction of the *r*-ary ovoid $\mathcal{O}_{r,p,u}$ is via the canonical bijection

$$f: \mathcal{O}_{r,p,u} \to \mathcal{O}_{2,p,1}$$

constructed as follows. Given $w \in \mathbb{Z}u + rE$ with $\frac{1}{2}||x||^2 = k(r-k)p$, $1 \le k \le \frac{r-1}{2}$, we have w = xy

for some $x, y \in E$ such that $\frac{1}{2}||x||^2 = p$ and $\frac{1}{2}||y||^2 = k(r-k)$. If we also require $x \in \mathbb{Z} + 2E$, then this factorization is unique up to a ± 1 factor and our bijection is

$$f:\langle \overline{W}\rangle \to \langle \overline{X}\rangle.$$

(4回) (4回) (4回)

Canonical bijections between E_8 -type ovoids in $O_8^+(p)$

Fix odd primes $r \neq p$ and $u \in E$ such that $\begin{pmatrix} -\frac{p}{2} \|u\|^2 \\ r \end{pmatrix} = +1$.

Denote the binary ovoid

$$\mathcal{O}_{2,\rho,1} = \left\{ \langle \overline{x} \rangle \ : \ \pm x \in \mathbb{Z} + 2E, \ \frac{1}{2} \|x\|^2 = \rho
ight\}.$$

An alternative construction of the *r*-ary ovoid $\mathcal{O}_{r,p,u}$ is via the canonical bijection

$$f: \mathcal{O}_{r,p,u} \to \mathcal{O}_{2,p,1}$$

constructed as follows. Given $w \in \mathbb{Z}u + rE$ with $\frac{1}{2}||x||^2 = k(r-k)p$, $1 \le k \le \frac{r-1}{2}$, we have w = xy

for some $x, y \in E$ such that $\frac{1}{2} ||x||^2 = p$ and $\frac{1}{2} ||y||^2 = k(r-k)$. If we also require $x \in \mathbb{Z} + 2E$, then this factorization is unique up to a ± 1 factor and our bijection is

$$f:\langle \overline{w} \rangle \to \langle \overline{x} \rangle.$$

(4回) (1日) (日)

When does $\mathcal{O}_{r,p,u}$ lie in an $\mathcal{O}_7(p)$ -hyperplane?

The binary ovoid $\mathcal{O} = \mathcal{O}_{2,p,e}$ lies in an $\mathcal{O}_7(p)$ -hyperplane iff p = 3. But even this case is rather tricky.

(4月) (日)

When does $\mathcal{O}_{r,p,u}$ lie in an $\mathcal{O}_7(p)$ -hyperplane?

The binary ovoid $\mathcal{O} = \mathcal{O}_{2,p,e}$ lies in an $\mathcal{O}_7(p)$ -hyperplane iff p = 3. But even this case is rather tricky.

Thank You!

Questions?

æ

G. Eric Moorhouse Counting Ovoids in the Triality Quadric

A D > A B > A