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Mutually Unbiased Bases

In order to have a complete set

of MUB’s in Cn, must n be a prime power?

(i.e. n = pr, p prime, r ≥ 1)



A projective  plane of order n has

• n2+n+1 points and the same number of lines;

• n+1 points on each line; and

• n+1  lines through each point.

Projective Planes

E.g.  Plane of order n = 2

n2+n+1 = 7 points

n2+n+1 = 7 lines

n+1 = 3 points on each line

n+1  = 3 lines through each point



A projective  plane of order n has

• n2+n+1 points and the same number of lines;

• n+1 points on each line; and

• n+1  lines through each point.

Projective Planes

E.g.  Plane of order n = 3

n2+n+1 = 13 points

n2+n+1 = 13 lines

n+1 = 4 points on each line

n+1  = 4 lines through each point



n 2 3 4 5 7 8 9 11 13

number of

planes of

order n

1 1 1 1 1 1 4 ≥1 ≥1

n 16 17 19 23 25 27 29 … 49

number of

planes of

order n

≥22 ≥1 ≥1 ≥1 ≥193 ≥13 ≥1 …
Hundreds 

of 
thousands



Nonexistence of Plane of Order 10

Clement Lam

Nonexistence of Plane
of Order 10, c.1988

John G. Thompson

Fields Medal, 1970
Abel Prize, 2008



Known Planes of Order 25

Translation planes  a1,…,a8; b1,…,b8; s1,…,s5  classified by
Czerwinski & Oakden (1992)



The Wyoming Plains



|Aut(w1)| = 19200

|Aut(w2)| = 3200

The Wyoming Planes



Thanks to my coauthor…



Where do the new planes come from?
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quotient by t, an 

automorphism of 
order 2
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A k-net of order n has

• n2 points;

• nk lines, each with n points.

Nets

E.g.  1-net of order 3 2-net of order 3 3-net of order 3

There are k parallel classes of n lines each.

Two lines from different parallel classes meet in a 
unique point.



E.g.  1-net of order 3 2-net of order 3 3-net of order 3

4-net of order 3Affine plane of order 3    =



4-net of order 3Affine plane of order 3    =

Affine plane of order n =  (n+1)-net of order n

• n2 points;

• n(n+1) lines  (n+1 parallel classes of n lines each).

Any 2 points are joined by exactly one line.

Any two non-parallel lines meet in a unique point.



Open Questions

1. Given an affine (or projective) plane of 

order n, must n be a prime power?

2. Must every affine (or projective) plane of 

prime order p be classical?

Affine plane of order n =  (n+1)-net of order n

• n2 points;

• n(n+1) lines  (n+1 parallel classes of n lines each).

Any 2 points are joined by exactly one line.

Any two non-parallel lines meet in a unique point.



One conceivable approach
uses ranks of nets…

rank of a net  =  rank of its incidence matrix.

p-rank of a net  =  rank of its incidence matrix

over  Fp = f0, 1, 2, …, p-1g

Open Questions

1. Given an affine (or projective) plane of 

order n, must n be a prime power?

2. Must every affine (or projective) plane of 

prime order p be classical?



1-net of order 3

rank3

1 1 1   0 0 0   0 0 0
0 0 0   1 1 1   0 0 0
0 0 0   0 0 0   1 1 1

=  3

2-net of order 3

rank3

1 1 1   0 0 0   0 0 0
0 0 0   1 1 1   0 0 0
0 0 0   0 0 0   1 1 1

1 0 0   1 0 0   1 0 0
0 1 0   0 1 0   0 1 0
0 0 1   0 0 1   0 0 1

=  3+2 = 5



rank3

1 1 1   0 0 0   0 0 0
0 0 0   1 1 1   0 0 0
0 0 0   0 0 0   1 1 1

1 0 0   1 0 0   1 0 0
0 1 0   0 1 0   0 1 0
0 0 1   0 0 1   0 0 1

1 0 0   0 1 0   0 0 1
0 1 0   0 0 1   1 0 0
0 0 1   1 0 0   0 1 0

=  3+2+1
=  6

3-net of order 3



rank3

1 1 1   0 0 0   0 0 0
0 0 0   1 1 1   0 0 0
0 0 0   0 0 0   1 1 1

1 0 0   1 0 0   1 0 0
0 1 0   0 1 0   0 1 0
0 0 1   0 0 1   0 0 1

1 0 0   0 1 0   0 0 1
0 1 0   0 0 1   1 0 0
0 0 1   1 0 0   0 1 0

1 0 0   0 1 0   0 0 1
0 1 0   1 0 0   0 1 0
0 0 1   0 0 1   1 0 0

=  3+2+1+0
=  6

4-net of order 3



Conjecture: Any k-net of prime order p has 

p-rank at least

p + (p-1) + (p-2) + … + (p-k+1) = pk –

for  k=1,2,3,…,p+1.

Moreover, nets whose p-rank achieves this lower 

bound are ‘classical’.

k(k-1)1

2

The corresponding statement over R or C is a theorem:

I.e. the incidence matrix of any k-net of order p

has nullity at most

k(k-1).
1

2



Take  F = R or C.

Consider functions  ui: F
2 F,    i=1,2,…,k.

level curves
u1 = constant



level curves
u2 = constant

level curves
u1 = constant

Take  F = R or C.

Consider functions  ui: F
2 F,    i=1,2,…,k.



level curves
u2 = constant

level curves
u3 = constant

Assume level curves meet transversely, i.e. 

ui , uj are linearly independent for i ≠ j.

level curves
u1 = constant

This is a 
k-web

(of codimension 1).

Shown: k=3

Take  F = R or C.

Consider functions  ui: F
2 F,    i=1,2,…,k.



V0 = vector space of all k-tuples (f1, f2, …, fk) of 

smooth functions  F  F such that

f1(u1(P)) + f2(u2(P)) + … + fk(uk(P)) = 0

for every point P  F 2 , and fi(0)=0.

F = R or C.

coordinate functions  ui : F 2 F,   i=1,2,…,k.

Note:  dim V0 is called the rank of the k-web.

Theorem (Blaschke et al.)  dim V0 ≤

Equality holds, e.g. in the case of `algebraic’ k-webs; 

these arise from algebraic curves of maximal genus.

(k-1)(k-2).
1

2



Theorem (Blaschke et al.)  dim V0 ≤

Equality holds, e.g. in the case of `algebraic’ k-webs; 

these arise from algebraic curves of maximal genus.

(k-1)(k-2).
1

2

Note:  dim V0 is called the rank of the k-web.

W. Blaschke
1885–1962

W. Blaschke & G. Bol,
Geometrie der Gewebe,
1938

G. Bol
1906–1989



N. Abel
1802–1829

Abel’s Theorem 
is the 
foundation for 
the Theorem of 
Blaschke et al.



P. Griffiths
1938–

S.S. Chern
1911–2004

Chern & Griffiths:
Numerous publications on 
Abel’s Theorem and webs



generate surface

S = C1 + C2

S

Special case k   = 4

A 4-web of rank r

or

a 4-net of order p, and p-rank 4p –3–r

yields:

Two curves C1, C2 in r-space

0

C2

C1



Special case k   = 4

Two curves C1, C2 in r-space

0

C2

C4

C3

S

generate surface

S = C1 + C2
C1

A 4-web of rank r

or

a 4-net of order p, and p-rank 4p –3–r

yields:



Special case k   = 4

Two curves C1, C2 in r-space

0

C2

C4

C3

S

generate surface

S = C1 + C2

= C3 + C4

C1

A 4-web of rank r

or

a 4-net of order p, and p-rank 4p –3–r

yields:



Two curves C1, C2 in 3-space

0

C2

C4

C3

generate surface

S = C1 + C2

= C3 + C4

C1

Example

S : z    = cx2 - y2

C1 = f(x,0,cx2) : x 2 F  g

C2 = f(0,y, -y2) : y 2 F  g

C3 = f(s,cs,c(1-c)s2) : s 2 F  g

C4 = f(t, t, (c-1)t2) : t 2 F  g



Two curves C1, C2 in 3-space

0

C2

C4

C3

generate surface

S = C1 + C2

= C3 + C4

C1

Example 2

S :

2z = (y +1)4

+2(x–1)(y+1)2

- x2 + 2x  + 1

C1 = f(s2+2s,s, (s+1)4–1) : s 2 R g

C3 = f(–u2–2u,u, 1–(u+1)4) : u 2 R g

C4 = f(-v2, v, -v4) : v 2 R g

C2 = f(–2t,0, -2t2–2t) : t 2 R g



Two curves C1, C2 in 3-space

0

C2

C4

C3

S

generate surface

S = C1 + C2

= C3 + C4

C1

S. Lie
1842–1899

Lie (1882) first considered such a

double translation surface.



Two curves C1, C2 in 3-space

0

C2

C4

C3

S

generate surface

S = C1 + C2

= C3 + C4

C1

S. Lie
1842–1899

Theorem (Lie, 1882).  Consider any 

double translation surface in Cr, r≥3. 

Then r=3 and there is an algebraic 

curve C of degree 4 in the plane at 

infinity, such that all tangent lines to 

C1, C2, C3 and C4 all pass through C.



S. Lie
1842–1899

Chern called this result 
a ‘true tour de force’.

Conversely, every algebraic curve C
of degree 4 and algebraic genus 3
in the plane at infinity determines a 
double translation surface S in this 

way.

Theorem (Lie, 1882).  Consider any 

double translation surface in Cr, r≥3. 

Then r=3 and there is an algebraic 

curve C of degree 4 in the plane at 

infinity, such that all tangent lines to 

C1, C2, C3 and C4 all pass through C.



H. Poincaré
1854–1912

S. Lie
1842–1899

Poincaré published 
sequels (1895, 1901) 
to Lie’s paper, 
observing the 
connection to Abel’s 
Theorem.

Lie was not 
thrilled.



J. Little
1956–

Little’s dissertation, 
under B. Saint-Donat, 
and several 
subsequent papers, 
concern webs of 
maximal rank.

In particular he 
proved an analogue 
(1984) over 
algebraically closed 
fields of positive 
characteristic.



For  k-webs over F(X,Y) or F((X,Y)), we have

Equality holds iff the web is ‘cyclic’.

We want versions of this result over finite fields.

Here are some results for k=3,4:

dim V0 ≤ (k-1)(k-2).
1

2



Theorem (M. 1991).  For a 3-net of prime order

p, we have dim V0 ≤ 1.  Equality holds iff the net 

is cyclic.

Original proof (1991) used loop theory.

More recent proof (M. 2005) uses exponential sums; 
cf. Gluck’s 1990 proof that  a transitive affine plane 
of prime order is Desarguesian.



Theorem (M. 2005).  For a 4-net of prime order p, 

we have

(a) The number of cyclic 3-subnets is 0, 1, 3 or 4.

(b) There are 4 cyclic 3-subnets iff the net is 
Desarguesian.

(c) If there is at least one cyclic subnet, then

dim V0 ≤ 3, and equality holds iff the net is cyclic.

Part (a) is best possible.

The proof uses exponential sums.



Theorem (M. 2005).  For a 4-net of prime order p, 

we have

(a) The number of cyclic 3-subnets is 0, 1, 3 or 4.

(b) There are 4 cyclic 3-subnets iff the net is 
Desarguesian.

(c) If there is at least one cyclic subnet, then

dim V0 ≤ 3, and equality holds iff the net is cyclic.

The same techniques can be applied in the study of

MUB’s (e.g. to show that MUB’s in Cn, n ≤ 5, are
unique).

The proof uses exponential sums.



4-net
(Affine Plane)

of order 3

3-net
of order 3



Thank You!

Questions?


