The LLL Algorithm for Lattices

G. Eric Moorhouse, UW Math

References

Henri Cohen, A Course in Computational Al-
gebraic Number Theory, Springer, 1993.

A.J. Menezes et al., Handbook of Applied Cryp-
tography, CRC Press, 1997.

A.K. Lenstra, H.W. Lenstra and L. Lovasz,
‘Factoring polynomials with rational coeffi-
cients’, Math. Ann. 261 (1982), 515-534.

M. Pohst, ‘A modification of the LLL-algorithm’,
J. Symb. Comp. 4 (1987), 123—128.

Definitions

A lattice L is a pair (Z", Q) where
Q:7Z" —R

is a positive definite quadratic form, i.e. Q(x) =
x' Ax where the real n x n matrix A is sym-
metric positive definite. We call A a Gram
matrix of L.

Two lattices (Z™, Q), (Z", Q") are isometric if
there exists a unimodular integer transfor-
mation M € GL(n,Z) (i.e. M and M~1 have
integer entries) such that

Q'(x) = Q(Mx) for all x e Z";
equivalently, A’ = MTAM.

Every lattice L = (Z",Q) is isometric to a
subset of R™ (for each m > n) using the stan-
dard real inner product (,). This gives an
alternative definition of a lattice:

A lattice L is a discrete additive subgroup
of R™: that is, L is the Z-span of a linearly
independent subset of R™:

L =7by+Zbs+ -+ Zby,

with the quadratic form Q(x) = (x,x) for x €
L. (Note: n <m.) The vectors by,bo,..., by,
are a basis for L, and A = [(b;, b;)]1<; iS
the corresponding Gram matrix.

J<n

Two linearly independent sets of vectors gen-
erate the same lattice iff they are related by
a unimodular integer transformation on R™.
Two Gram matrices represent isometric lat-
tices iff they are integrally congruent: A’ =
M'AM for some M € GL(n,Z).

Reduced Bases

The lattice L ¢ R? with basis
10 24
b1 = b, =
1 (14)’ 2 (33)
and Gram matrix
296 702]

A=
[702 1665

has reduced basis

by = ~7b1+3b = (7).

)
b5 = 19b;—8by = (;)

and Gram matrix

A= MTAM = | ° —2
_2 8

where M = [_37 f%}.

The technical definition of “reduced’ later. ..

Important Algorithms

LLL Algorithm—Given a lattice L by way of

a basis by,bs, ..., b, for L C R™, we find (in
polynomial time) a “reduced” basis b, b5, ..., bl
for L in R™,

Or given a Gram matrix A for L, we find (in
polynomial time) the Gram matrix A’ for L
with respect to a reduced basis.

In both cases, the unimodular integer matrix
M is also determined.

Often the shortest lattice vectors in L are
among the basis vectors found by LLL.

If A has integer entries, all computations can
be done exactly in Z using arbitrary precision
integer arithmetic.

MLLL Algorithm—Modified LLL algorithm
due to M. Pohst (1987). We are given an
m X n real matrix W whose columns generate
a lattice L ¢ R™. (The columns need not be
linearly independent.) We find (in polynomial
time) a reduced basis for L, and a (reduced)
basis for the kernel of the map W : Z" — Z™.

Or given the positive semidefinite Gram ma-
trix of a set of vectors b1,bo,..., b, € R™ gen-
erating a lattice L, we find a reduced basis
for L (expressed as linear combinations of the
b;'s), and a reduced basis for the lattice of
relations

n

{(r1,79,...,mn) €Z" : Z r;b; = 0}.
1=1

A pure integer version exists.

Fincke-Pohst Algorithm—Given a lattice L =
(Z™, Q) and a constant C > 0, find all x € Z"
such that Q(x) < C. The algorithm runs in
exponential time but works in many practical
situations. It makes use of LLL as a subalgo-
rithm.

The best way to determine with certainty the
shortest nonzero vectors in L is to let C be the
norm of the shortest basis vector in a reduced
basis (found using LLL); then to use Fincke-
Pohst to search for smaller vectors in L, if
any.

Determinants of Lattices

The determinant of L is

d(L) = +/det(A)

where A is a Gram matrix for L. Or equiva-
lently (if L C R™ has rank n), d(L) = |det(B)]
where B is an n x n matrix whose columns
form a basis by,bo,..., by for L.

Hadamard’s Inequality

d(L) < [17—1 |bj], and equality holds iff the
b;'s are orthogonal.

A “reduced” basis should have [[7_, |b;| rather
small; equivalently, the bj’s should be close to
orthogonal.

Gram-Schmidt Process

We have
OCLi1CLoC:---CLp=01L
where
Lj:Zb]_—I—ZbQ—I—"'—I—ij.

The orthogonal projection of bj onto Lj_1 IS
found recursively to be

bj=bj— > njkbi

1<k<j
where
Pl = b; by
7 '
by - b}
Then {b3,b5,...,b;} is an orthogonal (not

necessarily orthonormal) basis of RL = R®yz L.

Note that d(L) = [T7=1 [b3].

Definition of Reduced Basis
A basis {b1,bo,...,by} for L is reduced if
(i) |pjpl <3 for 1 <j <k <n, and
(i) Ib%2 > (3 — 12, Ibs 4] for 1 <j <n.
T he latter inequality is equivalent to

iy g 3
(i) Ib% + pj5-1b% 112 > ZIb%_4]°
(. ~ 7 N s’
proj Lj__Q(bj) proj L].L_Q(bj—l)

Theorem. A reduced basis satisfies

d(L) < [T Ibjl < 2nn=D/44(L);
j=1

Iby| < 2("=D/2|x| for all nonzero x € L;

[by] < 2=D/4q(L).

LLL Algorithm

Input a basis bq,bo,...,by for L. The fol-
lowing procedure replaces these vectors by a
reduced basis.

1. Set j =1.

2. For each k = 1,2,3,...,j—1, if |u;| > 3,
replace bj by bj — rb; where r € Z is chosen
so that

by - by

N;,k = = p; — 7 €[-0.5, 0.5].

3. If the Lovasz condition (ii) is satisfied,
increment k by one and go to Step 2 (unless
k = n, in which case we are done).

Otherwise interchange b;._1 with b,, decrease
k by 1 and go to Step 2.

Why the Algorithm Terminates
Let D = [I"—, d(L;) where d(L;) = ITj,_; |b{|%.

The value of D changes only in Step 3, where
Lj changes only for j = k—1;

d(L;_q) is replaced by
d(Lj,_1) < (PY2d(Ly-1); and

D is replaced by D’ < (%)UQD.

Since d(Ly_1) > ([x]/7;/3)" " where 71 is
Hermite’'s constant (the maximum of min{|v]| :
0 %= v € A} for all lattices A of rank k—1 and
determinant 1) and x is a shortest nonzero
vector in L, step 3 can be executed only a
finite number of times.

More careful analysis shows that the running
time is O(n®(log M)3) where M = max|b;|?.

Implementations of LLL

1. MAPLE V Release 5. LLL only (no
MLLL or Fincke-Pohst). Very accessible. But
doesn’'t use Gram matrices; requires an ex-
plicit list of generators.

2. Keith Matthews’ CALC. LLL, MLLL,
Fincke-Pohst and lots more number-theoretical
algorithms. Unsophisticated, quite accessible
and easily installed. Freely available at

http://www.maths.uq.edu.au/ "krm/

3. LIDIA. The most comprehensive, but tricky
toinstall. LLL, MLLL, Fincke-Pohst but doesn’t
work with Gram matrices; needs an explicit
list of vectors. Freely available from Darm-

stadt at
http://www.informatik.tu-darmstadt.de
/TI/LiDIA/

4. Pate Williams has programmed many
of the algorithms in Cohen’s book, including
LLL (no MLLL or Fincke-Pohst).

http://www.mindspring.com/“pate/

He uses Arjen Lenstra’'s LIP code for large
integer arithmetic in C, which is hard to read;
e.g. c=a+b; is written as

zmul (a,b,&c) ;

5. I have written my own code for LLL and

Fincke-Pohst in C4++4 using Owen Astrachan’s

code (1996) for arbitrary precision integer arith-
metic. This came out a little before LIP.

His bigint.h and bigint.cc are widely avail-

able over the WWW/. This allows us to use +,

x /, % etc. in class BigInt.

Kreher’'s Komputations

Let G be a permutation group of degree v,
and let A;. be the ‘incidence matrix’ of G-
orbits on t-subsets of points, versus G-orbits
on k-subsets of points.

(The (O, 0")-entry of Ay, equals the number
of B € O’ containing a fixed A € O.)

G-invariant ¢t-(v, k, \) designs are equivalent to
(0, 1)-solutions of

At,kX =)\]_
which can be solved using LLL or MLLL.

This led Kreher et al. to discover many new
designs.

