
The LLL Algorithm for Lattices

G. Eric Moorhouse, UW Math

References

Henri Cohen, A Course in Computational Al-

gebraic Number Theory, Springer, 1993.

A.J. Menezes et al., Handbook of Applied Cryp-

tography, CRC Press, 1997.

A.K. Lenstra, H.W. Lenstra and L. Lovász,

‘Factoring polynomials with rational coeffi-

cients’, Math. Ann. 261 (1982), 515–534.

M. Pohst, ‘A modification of the LLL-algorithm’,

J. Symb. Comp. 4 (1987), 123–128.

Definitions

A lattice L is a pair (Zn, Q) where

Q : Zn → R

is a positive definite quadratic form, i.e. Q(x) =

x>Ax where the real n × n matrix A is sym-

metric positive definite. We call A a Gram

matrix of L.

Two lattices (Zn, Q), (Zn, Q′) are isometric if

there exists a unimodular integer transfor-

mation M ∈ GL(n, Z) (i.e. M and M−1 have

integer entries) such that

Q′(x) = Q(Mx) for all x ∈ Zn;

equivalently, A′ = M>AM .

Every lattice L = (Zn, Q) is isometric to a

subset of Rm (for each m ≥ n) using the stan-

dard real inner product 〈 , 〉. This gives an

alternative definition of a lattice:

A lattice L is a discrete additive subgroup

of Rm; that is, L is the Z-span of a linearly

independent subset of Rm:

L = Zb1 + Zb2 + · · · + Zbn

with the quadratic form Q(x) = 〈x, x〉 for x ∈
L. (Note: n ≤ m.) The vectors b1, b2, . . . ,bn

are a basis for L, and A = [〈bi,bj〉]1≤i,j≤n is

the corresponding Gram matrix.

Two linearly independent sets of vectors gen-

erate the same lattice iff they are related by

a unimodular integer transformation on Rm.

Two Gram matrices represent isometric lat-

tices iff they are integrally congruent: A′ =
M>AM for some M ∈ GL(n, Z).

Reduced Bases

The lattice L ⊂ R2 with basis

b1 =
(10
14

)
, b2 =

(24
33

)

and Gram matrix

A =

[
296 702

702 1665

]

has reduced basis

b′
1 = −7b1+3b2 =

(2
1

)
,

b′
2 = 19b1−8b2 =

(−2

2

)

and Gram matrix

A′ = M>AM =

[
5 −2

−2 8

]

where M =
[−7

3
19
−8

]
.

The technical definition of “reduced” later. . .

Important Algorithms

LLL Algorithm—Given a lattice L by way of

a basis b1,b2, . . . ,bn for L ⊂ Rm, we find (in

polynomial time) a “reduced” basis b′
1,b′

2, . . . ,b′
n

for L in Rm.

Or given a Gram matrix A for L, we find (in

polynomial time) the Gram matrix A′ for L

with respect to a reduced basis.

In both cases, the unimodular integer matrix

M is also determined.

Often the shortest lattice vectors in L are

among the basis vectors found by LLL.

If A has integer entries, all computations can

be done exactly in Z using arbitrary precision

integer arithmetic.

MLLL Algorithm—Modified LLL algorithm

due to M. Pohst (1987). We are given an

m× n real matrix W whose columns generate

a lattice L ⊂ Rm. (The columns need not be

linearly independent.) We find (in polynomial

time) a reduced basis for L, and a (reduced)

basis for the kernel of the map W : Zn → Zm.

Or given the positive semidefinite Gram ma-

trix of a set of vectors b1,b2, . . . ,bn ∈ Rm gen-

erating a lattice L, we find a reduced basis

for L (expressed as linear combinations of the

bi’s), and a reduced basis for the lattice of

relations

{(r1, r2, . . . , rn) ∈ Zn :
n∑

i=1

ribi = 0}.

A pure integer version exists.

Fincke-Pohst Algorithm—Given a lattice L =

(Zn, Q) and a constant C > 0, find all x ∈ Zn

such that Q(x) < C. The algorithm runs in

exponential time but works in many practical

situations. It makes use of LLL as a subalgo-

rithm.

The best way to determine with certainty the

shortest nonzero vectors in L is to let C be the

norm of the shortest basis vector in a reduced

basis (found using LLL); then to use Fincke-

Pohst to search for smaller vectors in L, if

any.

Determinants of Lattices

The determinant of L is

d(L) =
√

det(A)

where A is a Gram matrix for L. Or equiva-

lently (if L ⊂ Rn has rank n), d(L) = |det(B)|
where B is an n × n matrix whose columns

form a basis b1,b2, . . . ,bn for L.

Hadamard’s Inequality

d(L) ≤
∏n

j=1 ||bj||, and equality holds iff the

bj’s are orthogonal.

A “reduced” basis should have
∏n

j=1 ||bj|| rather
small; equivalently, the bj’s should be close to

orthogonal.

Gram-Schmidt Process

We have

0 ⊂ L1 ⊂ L2 ⊂ · · · ⊂ Ln = L

where

Lj = Zb1 + Zb2 + · · · + Zbj .

The orthogonal projection of bj onto L⊥
j−1 is

found recursively to be

b∗
j = bj −

∑

1≤k<j

µj,kb
∗
k

where

µj,k =
bj · b∗

k

b∗
k · b∗

k

.

Then {b∗
1,b∗

2, . . . ,b∗
n} is an orthogonal (not

necessarily orthonormal) basis of RL = R⊗ZL.

Note that d(L) =
∏n

j=1 ||b∗
j ||.

Definition of Reduced Basis

A basis {b1,b2, . . . ,bn} for L is reduced if

(i) |µj,k| ≤ 1
2 for 1 ≤ j < k ≤ n, and

(ii) ||b∗
j ||

2 ≥ (3
4 − µ2

j,j−1)||b
∗
j−1||

2 for 1 < j ≤ n.

The latter inequality is equivalent to

(ii)’ ||b∗
j + µj,j−1b

∗
j−1||

2 ≥ 3
4||b

∗
j−1||

2

︸ ︷︷ ︸
proj

L⊥
j−2

(bj)
︸ ︷︷ ︸

proj
L⊥

j−2
(bj−1)

Theorem. A reduced basis satisfies

d(L) ≤
n∏

j=1

||bj|| ≤ 2n(n−1)/4d(L);

||b1|| ≤ 2(n−1)/2||x|| for all nonzero x ∈ L;

||b1|| ≤ 2(n−1)/4d(L).

LLL Algorithm

Input a basis b1, b2, . . . ,bn for L. The fol-

lowing procedure replaces these vectors by a

reduced basis.

1. Set j = 1.

2. For each k = 1,2,3, . . . , j−1, if |µj,k| > 1
2,

replace bj by bj − rbk where r ∈ Z is chosen

so that

µ′
j,k =

(bj − rbk) · b∗
k

b∗
k · b∗

k

= µj,k − r ∈ [−0.5, 0.5].

3. If the Lovász condition (ii) is satisfied,

increment k by one and go to Step 2 (unless

k = n, in which case we are done).

Otherwise interchange bk−1 with bk, decrease

k by 1 and go to Step 2.

Why the Algorithm Terminates

Let D =
∏n

j=1 d(Lj) where d(Lj) =
∏j

k=1 ||b∗
k||

2.

The value of D changes only in Step 3, where

Lj changes only for j = k−1;

d(Lk−1) is replaced by

d(L′
k−1) ≤ (3

4)
1/2d(Lk−1); and

D is replaced by D′ ≤ (3
4)

1/2D.

Since d(Lk−1) ≥ (||x||/γ
1/2
k−1)

k−1 where γk−1 is

Hermite’s constant (the maximum of min{||v|| :
0 6= v ∈ Λ} for all lattices Λ of rank k−1 and

determinant 1) and x is a shortest nonzero

vector in L, step 3 can be executed only a

finite number of times.

More careful analysis shows that the running

time is O(n6(logM)3) where M = max ||bi||2.

Implementations of LLL

1. MAPLE V Release 5. LLL only (no

MLLL or Fincke-Pohst). Very accessible. But

doesn’t use Gram matrices; requires an ex-

plicit list of generators.

2. Keith Matthews’ CALC. LLL, MLLL,

Fincke-Pohst and lots more number-theoretical

algorithms. Unsophisticated, quite accessible

and easily installed. Freely available at

http://www.maths.uq.edu.au/~krm/

3. LiDIA. The most comprehensive, but tricky

to install. LLL, MLLL, Fincke-Pohst but doesn’t

work with Gram matrices; needs an explicit

list of vectors. Freely available from Darm-

stadt at
http://www.informatik.tu-darmstadt.de

/TI/LiDIA/

4. Pate Williams has programmed many

of the algorithms in Cohen’s book, including

LLL (no MLLL or Fincke-Pohst).

http://www.mindspring.com/~pate/

He uses Arjen Lenstra’s LIP code for large

integer arithmetic in C, which is hard to read;

e.g. c=a+b; is written as

zmul(a,b,&c);

5. I have written my own code for LLL and

Fincke-Pohst in C++ using Owen Astrachan’s

code (1996) for arbitrary precision integer arith-

metic. This came out a little before LIP.

His bigint.h and bigint.cc are widely avail-

able over the WWW. This allows us to use +,

*, /, % etc. in class BigInt.

Kreher’s Komputations

Let G be a permutation group of degree v,

and let Atk be the ‘incidence matrix’ of G-

orbits on t-subsets of points, versus G-orbits

on k-subsets of points.

(The (O,O′)-entry of Atk equals the number

of B ∈ O′ containing a fixed A ∈ O.)

G-invariant t-(v, k, λ) designs are equivalent to

(0,1)-solutions of

At,kx = λ1

which can be solved using LLL or MLLL.

This led Kreher et al. to discover many new

designs.

