The LLL Algorithm for Lattices

G. Eric Moorhouse, UW Math

References

Henri Cohen, *A Course in Computational Algebraic Number Theory,* Springer, 1993.

A.J. Menezes et al., *Handbook of Applied Cryptography,* CRC Press, 1997.

A.K. Lenstra, H.W. Lenstra and L. Lovász, 'Factoring polynomials with rational coefficients', *Math. Ann.* **261** (1982), 515–534.

M. Pohst, 'A modification of the LLL-algorithm', *J. Symb. Comp.* **4** (1987), 123–128.

Definitions

A **lattice** *L* is a pair (\mathbb{Z}^n, Q) where

$$
Q:\mathbb{Z}^n\to\mathbb{R}
$$

is a positive definite quadratic form, i.e. $Q(x) =$ $\mathbf{x}^{\top} A \mathbf{x}$ where the real $n \times n$ matrix A is symmetric positive definite. We call *A* a **Gram matrix** of *L*.

Two lattices (\mathbb{Z}^n, Q) , (\mathbb{Z}^n, Q') are *isometric* if there exists a **unimodular integer transformation** $M \in GL(n, \mathbb{Z})$ (i.e. M and M^{-1} have integer entries) such that

 $Q'(\mathbf{x}) = Q(M\mathbf{x})$ for all $\mathbf{x} \in \mathbb{Z}^n$; equivalently, $A' = M^TAM$.

Every lattice $L = (\mathbb{Z}^n, Q)$ is isometric to a subset of \mathbb{R}^m (for each $m \geq n$) using the standard real inner product \langle , \rangle . This gives an alternative definition of a lattice:

A **lattice** *L* is a discrete additive subgroup of \mathbb{R}^m ; that is, L is the \mathbb{Z} -span of a linearly independent subset of R*m*:

$$
L = \mathbb{Z}b_1 + \mathbb{Z}b_2 + \cdots + \mathbb{Z}b_n
$$

with the quadratic form $Q(x) = \langle x, x \rangle$ for $x \in$ *L*. (Note: $n \leq m$.) The vectors $\mathbf{b}_1, \mathbf{b}_2, \ldots, \mathbf{b}_n$ are a **basis** for *L*, and $A = [\langle \mathbf{b}_i, \mathbf{b}_j \rangle]_{1 \le i, j \le n}$ is the corresponding Gram matrix.

Two linearly independent sets of vectors generate the same lattice iff they are related by a unimodular integer transformation on R*m*. Two Gram matrices represent isometric lattices iff they are **integrally congruent**: $A' =$ M^TAM for some $M \in GL(n, \mathbb{Z})$.

Reduced Bases

The lattice $L \subset \mathbb{R}^2$ with basis

$$
\mathbf{b}_1 = \begin{pmatrix} 10 \\ 14 \end{pmatrix}, \quad \mathbf{b}_2 = \begin{pmatrix} 24 \\ 33 \end{pmatrix}
$$

and Gram matrix

$$
A = \begin{bmatrix} 296 & 702 \\ 702 & 1665 \end{bmatrix}
$$

has reduced basis

$$
b'_1 = -7b_1 + 3b_2 = {2 \choose 1},
$$

$$
b'_2 = 19b_1 - 8b_2 = {2 \choose 2}
$$

and Gram matrix

$$
A' = M^{\top} A M = \begin{bmatrix} 5 & -2 \\ -2 & 8 \end{bmatrix}
$$

where $M = \begin{bmatrix} -7 \\ 3 \end{bmatrix}$ 3 19 −8 $\overline{1}$.

The technical definition of "reduced" later...

Important Algorithms

LLL Algorithm—Given a lattice *L* by way of a basis $\mathbf{b}_1, \mathbf{b}_2, \ldots, \mathbf{b}_n$ for $L \subset \mathbb{R}^m$, we find (in polynomial time) a "reduced" basis $\mathbf{b}'_1, \mathbf{b}'_2, \ldots, \mathbf{b}'_n$ for *L* in \mathbb{R}^m .

Or given a Gram matrix *A* for *L*, we find (in polynomial time) the Gram matrix *A*⁰ for *L* with respect to a reduced basis.

In both cases, the unimodular integer matrix *M* is also determined.

Often the shortest lattice vectors in *L* are among the basis vectors found by LLL.

If *A* has integer entries, all computations can be done *exactly* in $\mathbb Z$ using arbitrary precision integer arithmetic.

MLLL Algorithm—Modified LLL algorithm due to M. Pohst (1987). We are given an $m \times n$ real matrix *W* whose columns generate a lattice $L \subset \mathbb{R}^m$. (The columns need not be linearly independent.) We find (in polynomial time) a reduced basis for *L*, *and* a (reduced) basis for the kernel of the map $W: \mathbb{Z}^n \to \mathbb{Z}^m$.

Or given the positive semidefinite Gram matrix of a set of vectors $\mathbf{b}_1, \mathbf{b}_2, \ldots, \mathbf{b}_n \in \mathbb{R}^m$ generating a lattice *L*, we find a reduced basis for *L* (expressed as linear combinations of the **b***i*'s), *and* a reduced basis for the lattice of relations

$$
\{(r_1, r_2, \ldots, r_n) \in \mathbb{Z}^n : \sum_{i=1}^n r_i b_i = 0\}.
$$

A pure integer version exists.

Fincke-Pohst Algorithm—Given a lattice *L* = (\mathbb{Z}^n, Q) and a constant $C > 0$, find all $\mathbf{x} \in \mathbb{Z}^n$ such that $Q(x) < C$. The algorithm runs in exponential time but works in many practical situations. It makes use of LLL as a subalgorithm.

The best way to determine with certainty *the shortest* nonzero vectors in *L* is to let *C* be the norm of the shortest basis vector in a reduced basis (found using LLL); then to use Fincke-Pohst to search for smaller vectors in *L*, if any.

Determinants of Lattices

The **determinant** of *L* is

$$
d(L) = \sqrt{\det(A)}
$$

where *A* is a Gram matrix for *L*. Or equivalently (if $L \subset \mathbb{R}^n$ has rank *n*), $d(L) = |det(B)|$ where B is an $n \times n$ matrix whose columns form a basis $\mathbf{b}_1, \mathbf{b}_2, \ldots, \mathbf{b}_n$ for *L*.

Hadamard's Inequality

 $d(L) \ \le \ \prod_{j=1}^n \|{\bf b}_j\|$, and equality holds iff the **b***j*'s are orthogonal.

A "reduced" basis should have $\prod_{j=1}^n\|\mathbf{b}_j\|$ rather small; equivalently, the **b***j*'s should be close to orthogonal.

Gram-Schmidt Process

We have

$$
0 \subset L_1 \subset L_2 \subset \cdots \subset L_n = L
$$

where

$$
L_j = \mathbb{Z}\mathbf{b}_1 + \mathbb{Z}\mathbf{b}_2 + \cdots + \mathbb{Z}\mathbf{b}_j.
$$

The orthogonal projection of \mathbf{b}_j onto L_{j-1}^\perp is found recursively to be

$$
\mathbf{b}_j^* = \mathbf{b}_j - \sum_{1 \le k < j} \mu_{j,k} \mathbf{b}_k^*
$$

where

$$
\mu_{j,k} = \frac{\mathbf{b}_j \cdot \mathbf{b}_k^*}{\mathbf{b}_k^* \cdot \mathbf{b}_k^*}.
$$

Then $\{b_1^*, b_2^*, \ldots, b_n^*\}$ is an orthogonal (not necessarily orthonormal) basis of $\mathbb{R}L = \mathbb{R} \otimes_{\mathbb{Z}} L$.

Note that $d(L) = \prod_{j=1}^{n} ||b_j^*||$.

Definition of Reduced Basis

A basis
$$
\{b_1, b_2, \ldots, b_n\}
$$
 for L is **reduced** if

- (i) $|\mu_{j,k}| \leq \frac{1}{2}$ for $1 \leq j < k \leq n$, and
- (ii) $\|\mathbf{b}^*_j\|^2 \geq (\frac{3}{4} \mu_{j,j-1}^2) \|\mathbf{b}^*_{j-1}\|^2$ for $1 < j \leq n$.

The latter inequality is equivalent to

(ii)'
$$
\frac{\|\mathbf{b}_{j}^{*} + \mu_{j,j-1}\mathbf{b}_{j-1}^{*}\|^2 \geq \frac{3}{4} \|\mathbf{b}_{j-1}^{*}\|^2}{\text{proj}_{L_{j-2}^{\perp}}(\mathbf{b}_j)} \sum_{p \text{roj}_{L_{j-2}^{\perp}}(\mathbf{b}_{j-1})}
$$

Theorem. *A reduced basis satisfies* $d(L) \leq \prod_{i=1}^{n}$ *n* $i=1$ $||\mathbf{b}_j||$ ≤ 2^{*n*(*n*−1)/4}*d*(*L*); $||\mathbf{b}_1|| \leq 2^{(n-1)/2}||\mathbf{x}||$ *for all nonzero* $\mathbf{x} \in L$; $||\mathbf{b}_1|| \leq 2^{(n-1)/4} d(L).$

LLL Algorithm

Input a basis $\mathbf{b}_1, \mathbf{b}_2, \ldots, \mathbf{b}_n$ for *L*. The following procedure replaces these vectors by a reduced basis.

1. Set $j = 1$.

2. For each $k = 1, 2, 3, \ldots, j-1$, if $|\mu_{j,k}| > \frac{1}{2}$, replace \mathbf{b}_j by $\mathbf{b}_j - r \mathbf{b}_k$ where $r \in \mathbb{Z}$ is chosen so that

$$
\mu'_{j,k} = \frac{(\mathbf{b}_j - r\mathbf{b}_k) \cdot \mathbf{b}_k^*}{\mathbf{b}_k^* \cdot \mathbf{b}_k^*} = \mu_{j,k} - r \in [-0.5, 0.5].
$$

3. If the Lovász condition (ii) is satisfied, increment *k* by one and go to Step 2 (unless $k = n$, in which case we are done).

Otherwise interchange \mathbf{b}_{k-1} with \mathbf{b}_k , decrease *k* by 1 and go to Step 2.

Why the Algorithm Terminates

Let $D = \prod_{j=1}^{n} d(L_j)$ where $d(L_j) = \prod_{k=1}^{j} ||\mathbf{b}_{k}^{*}||^2$.

The value of *D* changes only in Step 3, where

 L_j changes only for $j = k-1$; *d*(*Lk*−1) is replaced by $d(L'_{k-1}) \leq (\frac{3}{4})^{1/2} d(L_{k-1});$ and *D* is replaced by $D' \leq (\frac{3}{4})^{1/2}D$.

 $\textsf{Since}\,\ d(L_{k-1})\geq (\|\mathbf{x}\|/\gamma_{k-1}^{1/2})^{k-1}\,\ \textsf{where}\,\ \gamma_{k-1}\,\ \textsf{is}$ Hermite's constant (the maximum of min{||**v**|| : $0 \neq v \in \Lambda$ } for all lattices Λ of rank $k-1$ and determinant 1) and **x** is a shortest nonzero vector in *L*, step 3 can be executed only a finite number of times.

More careful analysis shows that the running time is $O(n^6(\log M)^3)$ where $M = \max ||b_i||^2$.

Implementations of LLL

1. **MAPLE V Release 5**. LLL only (no MLLL or Fincke-Pohst). Very accessible. But doesn't use Gram matrices; requires an explicit list of generators.

2. **Keith Matthews' CALC**. LLL, MLLL, Fincke-Pohst and lots more number-theoretical algorithms. Unsophisticated, quite accessible and easily installed. Freely available at

http://www.maths.uq.edu.au/~krm/

3. **LiDIA**. The most comprehensive, but tricky to install. LLL, MLLL, Fincke-Pohst but doesn't work with Gram matrices; needs an explicit list of vectors. Freely available from Darmstadt at

http://www.informatik.tu-darmstadt.de /TI/LiDIA/

4. **Pate Williams** has programmed many of the algorithms in Cohen's book, including LLL (no MLLL or Fincke-Pohst).

http://www.mindspring.com/~pate/

He uses Arjen Lenstra's LIP code for large integer arithmetic in C, which is hard to read; e.g. c=a+b; is written as

 $zmul(a,b,kc)$;

5. I have written my own code for LLL and Fincke-Pohst in C++ using Owen Astrachan's code (1996) for arbitrary precision integer arithmetic. This came out a little before LIP. His bigint.h and bigint.cc are widely available over the WWW. This allows us to use +, *, /, % etc. in class BigInt.

Kreher's Komputations

Let *G* be a permutation group of degree *v*, and let *Atk* be the 'incidence matrix' of *G*orbits on *t*-subsets of points, versus *G*-orbits on *k*-subsets of points.

(The $(0,0')$ -entry of A_{tk} equals the number of $B \in \mathcal{O}'$ containing a fixed $A \in \mathcal{O}$.)

G-invariant t - (v, k, λ) designs are equivalent to (0*,* 1)-solutions of

$$
A_{t,k} \mathbf{x} = \lambda \mathbf{1}
$$

which can be solved using LLL or MLLL.

This led Kreher et al. to discover many new designs.