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Double Covers of Triangles
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K3 with edges signed

←→
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3+

double cover of K3

A double cover of K3 is either two triangles or a 6-cycle,
according as

σ(1,2,3) := σ(1,2)σ(2,3)σ(3,1) = +1 or −1.
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Two-Graphs and Graphs

Let V be a set, and
(V

k

)
the collection of all k -subsets of V . A

two-graph on V is a subset ∆ ⊆
(V

3

)
such that every 4-subset

S ⊆ V contains an even number (i.e. 0, 2 or 4) triples in ∆.

The following three notions are equivalent:{ switching-equivalence
classes of graphs on V

} {equivalence classes of double covers
of KV , the complete graph on V

}
{

two-graphs on V
}
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Two-graphs and Double Covers of Complete Graphs

Let V be any set, and consider an arbitrary signing of the
complete graph KV on V , i.e.

σ :
(V

2

)
→ {±1}.

Construct a graph K σ
V on vertex set V × {±1} with adjacency

relation
xε ∼ yε

′ ⇐⇒ εε′ = σ(x , y).

The covering map K σ
V → KV is determined by the vertex map

xε 7→ x .

The pairs {x , y} ∈
(V

2

)
such that σ(x , y) = −1 form a graph on

V which determines K σ
V up to relabelling i+ ↔ i−. So K σ

V
corresponds to a switching-equivalence class of ordinary
graphs on V .
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Two-graphs and Double Covers of Complete Graphs

Let V be any set, and consider an arbitrary signing of the
complete graph KV on V , i.e.

σ :
(V

2

)
→ {±1}.

Construct a graph K σ
V on vertex set V × {±1} with adjacency

relation
xε ∼ yε

′ ⇐⇒ εε′ = σ(x , y).

The covering map K σ
V → KV is determined by the vertex map

xε 7→ x .

The triples {x , y , z} ∈
(V

3

)
such that

σ(x , y , z) := σ(x , y)σ(y , z)σ(z, x) = −1

form a two-graph ∆ = ∆(σ) which corresponds to the double
cover K σ

V .
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Classical Polar Spaces

Let V be a finite-dimensional vector space over a finite field Fq
of odd order. Let

B : V × V → Fq

be a nondegenerate form on V (skew-symmetric, symmetric or
hermitian).

A subspace U 6 V is totally isotropic if B(u,u′) = 0 for all
u,u′ ∈ U. All maximal totally isotropic subspaces have the
same dimension n. The natural incidence structure formed by
the totally isotropic subspaces of V is a polar space P of
rank n.

Fix V , q, B, n, P as above.
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Determinant Functions

Fix V , q, B, n, P as above.

Let U 6 V be a totally isotropic (or totally singular) k -subspace,
k 6 n. A determinant function on U is a nonzero k -linear map
δ : Uk → Fq where k = dim U, such that

δ(uτ(1),uτ(2), . . . ,uτ(k)) = −δ(u1,u2, . . . ,uk )

for every odd permutation τ of 1,2, . . . , k . Any such function δ
forms a basis for the 1-space (

∧kU)∗ = Hom(
∧kU,Fq).

To construct δ, one may first choose arbitrarily a basis
ψ1, ψ2, . . . , ψk for U∗ = Hom(U,Fq), then take

δ(u1,u2, . . . ,uk ) = det
[
ψi(uj) : 1 6 i , j 6 k

]
.
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The Maslov Index

For each totally isotropic k -space U 6 V , choose a determinant
function δU on U. Let χ : F×q → {±1} be the quadratic
character.
For any two totally isotropic k -subspaces U,U ′ 6 V , define
σ(U,U ′) = ±1 as follows. Choose bases u1, . . . ,uk and
u′1, . . . ,u

′
k for U and U ′ respectively, such that ui = u′i

(r < i 6 k ) forms a basis for U ∩ U ′. Set

σ(U,U ′) = χ
(
δU(u1, . . . ,uk )δU′(u′1, . . . ,u

′
k ) det[B(ui ,u′j ) : 16i , j6r ]

)
= ±1.

Also for totally isotropic k -subspaces U,U ′,U ′′ 6 V , define

σ(U,U ′,U ′′) = σ(U,U ′)σ(U ′,U ′′)σ(U ′′,U) = ±1.
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Invariance of the Maslov Index

Theorem
Let U,U ′ 6 V be totally singular k-subspaces.

(i) The value of σ(U,U ′) is independent of the choice of
bases above.

(ii) Replacing δU by cδU results in replacing σ(U,U ′) by
χ(c)σ(U,U ′).

(iii) If B is symmetric or Hermitian, then σ(U ′.U) = σ(U,U ′). If
B is alternating, then σ(U ′,U) = (−1)k(q−1)/2σ(U,U ′).

(iv) For every isometry g of B, σ(Ug ,U ′g) = σ(U,U ′).

If B is alternating, assume q ≡ 1 mod 4. Then the isometry
group of B preserves σ(U,U ′,U ′′) and the two-graph on Uk (the
collection of totally isotropic k -subspaces of V ) given by

∆k =
{
{U,U ′,U ′′} ∈

(
Uk
3

)
: σ(U,U ′,U ′′) = −1

}
.
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Association Schemes from Symplectic Dual Polar
Graphs

Now suppose B is alternating, P is a symplectic polar space,
2n = dim V , and assume q−1

2 n is even.

The vertex set of the symplectic dual polar graph is
Un = {maximal totally isotropic subspaces}. For U,U ′ ∈ Un, the
distance is

d(X ,Y ) = k 6 n ⇐⇒ dim(X/X∩Y ) = dim(Y/X∩Y ) = k .

We construct a (2n+1)-class association scheme on
2|Un| = 2qn2 ∏n

i=1(q2i − 1) vertices X+,X− where X ∈ Un. The
relations (k = 0,1,2, . . . ,n) are

X ε k∼ Y ε′ ⇐⇒ d(X ,Y )=k , εε′=σ(X ,Y );

X ε 2n+1−k∼ Y ε′ ⇐⇒ d(X ,Y )=k , εε′=−σ(X ,Y ).
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Questions

The (2n+1)-class association schemes constructed above are
Q-polynomial (not P-polynomial). Can other such constructions
be found, starting with a different polar space? or with different
dimensions k ∈ {1,2, . . . ,n−1} of totally isotropic subspaces?

Gunawardena and M. (1995) used a two-graph argument to
prove the nonexistence of ovoids in orthogonal polar spaces of
type O2n+1(q), n > 4. Can the new invariants be used to solve
other open problems regarding existence of ovoids, spreads or
m-systems?
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