

G. Eric Moorhouse

Department of Mathematics University of Wyoming

Zhejiang University—March 2019

画面 ă

 \blacktriangleright \blacktriangleleft

K ロ ⊁ K 伊 ⊁ K ミ

Let Π be a projective plane of order *n* with incidence matrix *A*.

Let *p* be a prime dividing *n*. (Only primes dividing *n* are of interest.)

The *p*-rank of Π is the rank of *A* over a field of characteristic *p*. This is an isomorphism invariant of Π (in fact, the easiest such invariant to compute).

Since $AA^T = nI + J$, we have the trivial upper bound rank $_{\rho}$ A \leqslant $\frac{1}{2}$ $\frac{1}{2}(n^2+n+2)$ whenever $p \mid n$. Equality holds if $p = n$.

The best known lower bound is $\mathsf{rank}_\rho A \geqslant n^{3/2} {+1}$ (Bruen and Ott, 1990; de Caen, Godsil and Royle, 1992).

The *p*-rank of Π is the rank of *A* over a field of characteristic *p*. This is an isomorphism invariant of Π (in fact, the easiest such invariant to compute).

Since $AA^T = nI + J$, we have the trivial upper bound rank $_{\rho}$ A \leqslant $\frac{1}{2}$ $\frac{1}{2}(n^2+n+2)$ whenever $p \mid n$. Equality holds if $p = n$.

The best known lower bound is $\mathsf{rank}_\rho A \geqslant n^{3/2} {+1}$ (Bruen and Ott, 1990; de Caen, Godsil and Royle, 1992).

← ロ → → イ 同 → →

The *p*-rank of Π is the rank of *A* over a field of characteristic *p*. This is an isomorphism invariant of Π (in fact, the easiest such invariant to compute).

Since $AA^T = nI + J$, we have the trivial upper bound rank $_{\rho}$ A \leqslant $\frac{1}{2}$ $\frac{1}{2}(n^2+n+2)$ whenever $p \mid n$. Equality holds if $p = n$.

The best known lower bound is $\mathsf{rank}_\rho A \geqslant n^{3/2} {+1}$ (Bruen and Ott, 1990; de Caen, Godsil and Royle, 1992).

K ロ ▶ K 伊 ▶ K ヨ ▶

The *p*-rank of Π is the rank of *A* over a field of characteristic *p*. This is an isomorphism invariant of Π (in fact, the easiest such invariant to compute).

Since $AA^T = nI + J$, we have the trivial upper bound rank $_{\rho}$ A $\leqslant \frac{1}{2}$ $\frac{1}{2}(n^2+n+2)$ whenever $p \mid n$. Equality holds if $p = n$.

The best known lower bound is $\mathsf{rank}_\rho A \geqslant n^{3/2} {+1}$ (Bruen and Ott, 1990; de Caen, Godsil and Royle, 1992).

K ロ ▶ K 伊 ▶ K ヨ ▶

The *p*-rank of Π is the rank of *A* over a field of characteristic *p*. This is an isomorphism invariant of Π (in fact, the easiest such invariant to compute).

Since $AA^T = nI + J$, we have the trivial upper bound rank $_{\rho}$ A $\leqslant \frac{1}{2}$ $\frac{1}{2}(n^2+n+2)$ whenever $p \mid n$. Equality holds if $p = n$.

The best known lower bound is rank $_{\rho}$ A \geqslant $n^{3/2}{+}1$ (Bruen and Ott, 1990; de Caen, Godsil and Royle, 1992).

KO K K FR K D K

There are 99 known projective planes of order 25. Their 5-ranks are

226 1 , 239 1 , 251 1 , 253 1 , 255 1 , 256 1 , 257 1 , 258 3 , 259 3 , $260^2,\ 261^2,\ 262^5,\ 264^2,\ 266^1,\ 268^3,\ 269^1,\ 271^1,\ 272^2,$ $273^1,\ 274^3,\ 275^4,\ 276^6,\ 277^6,\ 278^{12},\ 279^{27},\ 280^6,\ 286^1,\ 300^1$

where *r k* indicates *k* planes of rank *r*.

The plane with smallest 5-rank is the classical plane $\mathbb{P}^2\mathbb{F}_{25}$. The largest 5-rank occurs for a derived Hughes plane.

Computation of *p*-rank is difficult for large matrices not because of execution time, but due to limits on available RAM.

There are 99 known projective planes of order 25. Their 5-ranks are

226 1 , 239 1 , 251 1 , 253 1 , 255 1 , 256 1 , 257 1 , 258 3 , 259 3 , $260^2,\ 261^2,\ 262^5,\ 264^2,\ 266^1,\ 268^3,\ 269^1,\ 271^1,\ 272^2,$ $273^1,\ 274^3,\ 275^4,\ 276^6,\ 277^6,\ 278^{12},\ 279^{27},\ 280^6,\ 286^1,\ 300^1$

where *r k* indicates *k* planes of rank *r*.

The plane with smallest 5-rank is the classical plane $\mathbb{P}^2\mathbb{F}_{25}$. The largest 5-rank occurs for a derived Hughes plane.

Computation of *p*-rank is difficult for large matrices not because of execution time, but due to limits on available RAM.

There are 99 known projective planes of order 25. Their 5-ranks are

226 1 , 239 1 , 251 1 , 253 1 , 255 1 , 256 1 , 257 1 , 258 3 , 259 3 , $260^2,\ 261^2,\ 262^5,\ 264^2,\ 266^1,\ 268^3,\ 269^1,\ 271^1,\ 272^2,$ $273^1,\ 274^3,\ 275^4,\ 276^6,\ 277^6,\ 278^{12},\ 279^{27},\ 280^6,\ 286^1,\ 300^1$

where *r k* indicates *k* planes of rank *r*.

The plane with smallest 5-rank is the classical plane $\mathbb{P}^2\mathbb{F}_{25}$. The largest 5-rank occurs for a derived Hughes plane.

Computation of *p*-rank is difficult for large matrices not because of execution time, but due to limits on available RAM.

Q: Improve the upper and lower bounds for rank*^p A* in general. For $n = 25$ we know $126 \leq$ rank_p $A \leq 326$, but all known planes have *p*-rank in the interval [226, 300].

Q: Improve the known upper bound for *p*-ranks of translation planes (Key and MacKenzie, 1991). For $q = 25$ this upper bound is 296; the translation planes have rank ≤ 264 .

← ロ → → イ 同 → →

Q: Improve the upper and lower bounds for rank*^p A* in **general.** For $n = 25$ we know $126 \leq$ rank_p $A \leq 326$, but all known planes have *p*-rank in the interval [226, 300].

Q: Improve the known upper bound for *p*-ranks of translation planes (Key and MacKenzie, 1991). For $q = 25$ this upper bound is 296; the translation planes have rank ≤ 264 .

K ロ ⊁ K 伊 ⊁ K 目

Q: Improve the upper and lower bounds for rank*^p A* in general. For $n = 25$ we know $126 \leq \text{rank}_{p} A \leq 326$, but all known planes have *p*-rank in the interval [226, 300].

Q: Improve the known upper bound for *p*-ranks of translation planes (Key and MacKenzie, 1991). For $q = 25$ this upper bound is 296; the translation planes have rank ≤ 264 .

 $(0 \times 10^5) \times 10^5$

Q: Improve the upper and lower bounds for rank*^p A* in general. For $n = 25$ we know $126 \leq \text{rank}_p A \leq 326$, but all known planes have *p*-rank in the interval [226, 300].

Q: Improve the known upper bound for *p*-ranks of translation planes (Key and MacKenzie, 1991). For $q = 25$ this upper bound is 296; the translation planes have rank ≤ 264 .

K ロ ⊁ K 伊 ⊁ K

p-Ranks and Related/Current Work

The study of *p*-ranks of incidence matrices extends naturally to questions about Smith Normal Forms and decomposition of the associated \mathbb{F}_p -codes as \mathbb{F}_p *G*-modules.

Edward Assmus Richard Wilson Andries Brouwer Peter Sin Qing Xiang

K ロ ⊁ K 伊 ⊁ K

The study of *p*-ranks uses tools from algebraic geometry, number theory and modular representation theory. It has applications in finite geometry; but the biggest question remains the search for more such applications.

p-Ranks and Related/Current Work

The study of *p*-ranks of incidence matrices extends naturally to questions about Smith Normal Forms and decomposition of the associated \mathbb{F}_p -codes as \mathbb{F}_p *G*-modules.

Edward Assmus Richard Wilson Andries Brouwer Peter Sin Qing Xiang

K ロ ⊁ K 伊 ⊁ K

The study of *p*-ranks uses tools from algebraic geometry, number theory and modular representation theory. It has applications in finite geometry; but the biggest question remains the search for more such applications.

p-Ranks and Related/Current Work

The study of *p*-ranks of incidence matrices extends naturally to questions about Smith Normal Forms and decomposition of the associated \mathbb{F}_p -codes as \mathbb{F}_p *G*-modules.

Edward Assmus Richard Wilson Andries Brouwer Peter Sin Qing Xiang

K ロ ⊁ K 倒 ≯ K

The study of *p*-ranks uses tools from algebraic geometry, number theory and modular representation theory. It has applications in finite geometry; but the biggest question remains the search for more such applications.

Let *A* be the incidence matrix of points versus hyperplanes in $\mathbb{P}^n\mathbb{F}_q$, $q = \rho^e$. Then

$$
\operatorname{rank}_p A = \binom{p+n-1}{n}^e + 1.
$$

If $p^{\lfloor n/2 \rfloor} > {p+n-1 \choose p}$ $_{n}^{n-1}),$ then quadrics in $\mathbb{P}^{n}\mathbb{F}_{q}$ contain no ovoids.

In particular, there are no ovoids in quadrics in $\mathbb{P}^9\mathbb{F}_{2^e}$, $\mathbb{P}^9\mathbb{F}_{3^e}$, $\mathbb{P}^{11}\mathbb{F}_{5^e},$ $\mathbb{P}^{11}\mathbb{F}_{7^e},$ etc.

Proof. If $\mathcal{O} = \{P_1, P_2, \ldots, P_m\}$ is an ovoid, then the points of $\mathcal O$ and the hyperplanes $P_1^\perp,\ldots,P_m^\perp$ index the rows and columns of an identity submatrix *I^m* in *A*. Comparing *p*-ranks,

$$
m = p^{\lfloor n/2 \rfloor e} + 1 \leq {p+n-1 \choose n}^e + 1.
$$

K ロ ▶ K 伊 ▶ K ヨ ▶

Let *A* be the incidence matrix of points versus hyperplanes in $\mathbb{P}^n\mathbb{F}_q$, $q = \rho^e$. Then

$$
\operatorname{rank}_p A = \binom{p+n-1}{n}^e + 1.
$$

Theorem (Blokhuis and M., 1995)

If $p^{\lfloor n/2 \rfloor} > {p+n-1 \choose n}$ $_{n}^{n-1}),$ then quadrics in $\mathbb{P}^{n}\mathbb{F}_{q}$ contain no ovoids.

In particular, there are no ovoids in quadrics in $\mathbb{P}^9\mathbb{F}_{2^e}$, $\mathbb{P}^9\mathbb{F}_{3^e}$, $\mathbb{P}^{11}\mathbb{F}_{5^e},$ $\mathbb{P}^{11}\mathbb{F}_{7^e},$ etc.

Proof. If $\mathcal{O} = \{P_1, P_2, \ldots, P_m\}$ is an ovoid, then the points of $\mathcal O$ and the hyperplanes $P_1^\perp,\ldots,P_m^\perp$ index the rows and columns of an identity submatrix *I^m* in *A*. Comparing *p*-ranks,

$$
m = p^{\lfloor n/2 \rfloor e} + 1 \leq {p+n-1 \choose n}^e + 1.
$$

 $($ \Box \rightarrow $($ \Box \rightarrow $($ \Box \rightarrow $($

Let *A* be the incidence matrix of points versus hyperplanes in $\mathbb{P}^n\mathbb{F}_q$, $q = \rho^e$. Then

$$
rank_p A = \binom{p+n-1}{n}^e + 1.
$$

Theorem (Blokhuis and M., 1995)

If $p^{\lfloor n/2 \rfloor} > {p+n-1 \choose n}$ $_{n}^{n-1}),$ then quadrics in $\mathbb{P}^{n}\mathbb{F}_{q}$ contain no ovoids.

In particular, there are no ovoids in quadrics in $\mathbb{P}^9\mathbb{F}_{2^e}$, $\mathbb{P}^9\mathbb{F}_{3^e}$, $\mathbb{P}^{11}\mathbb{F}_{5^e}$, $\mathbb{P}^{11}\mathbb{F}_{7^e}$, etc.

Proof. If $\mathcal{O} = \{P_1, P_2, \ldots, P_m\}$ is an ovoid, then the points of $\mathcal O$ and the hyperplanes $P_1^\perp,\ldots,P_m^\perp$ index the rows and columns of an identity submatrix *I^m* in *A*. Comparing *p*-ranks,

$$
m = p^{\lfloor n/2 \rfloor e} + 1 \leq {p+n-1 \choose n}^e + 1.
$$

KO K K @ K K B K K

Let *A* be the incidence matrix of points versus hyperplanes in $\mathbb{P}^n\mathbb{F}_q$, $q = \rho^e$. Then

$$
rank_p A = \binom{p+n-1}{n}^e + 1.
$$

Theorem (Blokhuis and M., 1995)

If $p^{\lfloor n/2 \rfloor} > {p+n-1 \choose n}$ $_{n}^{n-1}),$ then quadrics in $\mathbb{P}^{n}\mathbb{F}_{q}$ contain no ovoids.

In particular, there are no ovoids in quadrics in $\mathbb{P}^9\mathbb{F}_{2^e}$, $\mathbb{P}^9\mathbb{F}_{3^e}$, $\mathbb{P}^{11}\mathbb{F}_{5^e}$, $\mathbb{P}^{11}\mathbb{F}_{7^e}$, etc.

Proof. If $\mathcal{O} = \{P_1, P_2, \ldots, P_m\}$ is an ovoid, then the points of $\mathcal O$ and the hyperplanes $P_1^\perp,\ldots,P_m^\perp$ index the rows and columns of an identity submatrix *I^m* in *A*. Comparing *p*-ranks,

$$
m = p^{\lfloor n/2 \rfloor e} + 1 \leq {p+n-1 \choose n}^e + 1.
$$

K ロ メ イ 団 メ メ ミ メ

$$
A = \begin{bmatrix} A_{11} & A_{12} \\ A_{12}^T & A_{22} \end{bmatrix}
$$

where rows (and columns) of A_{11} are indexed by points of the quadric (and tangent hyperplanes).

Sharper bounds for ovoids follow from $|\mathcal{O}| = m \leqslant \text{rank}_p A_{11} \leqslant \text{rank}_p[A_{11}|A_{12}] \leqslant \text{rank}_p A$.

The improved bounds are sometimes tight!

$$
A = \begin{bmatrix} A_{11} & A_{12} \\ A_{12}^T & A_{22} \end{bmatrix}
$$

where rows (and columns) of A_{11} are indexed by points of the quadric (and tangent hyperplanes).

Sharper bounds for ovoids follow from

 $|\mathcal{O}| = m \leqslant \text{rank}_p A_{11} \leqslant \text{rank}_p[A_{11}|A_{12}] \leqslant \text{rank}_p A$.

The improved bounds are sometimes tight!

$$
A = \begin{bmatrix} A_{11} & A_{12} \\ A_{12}^T & A_{22} \end{bmatrix}
$$

where rows (and columns) of A_{11} are indexed by points of the quadric (and tangent hyperplanes).

Sharper bounds for ovoids follow from

 $|\mathcal{O}| = m \leq$ rank_p $A_{11} \leq$ rank_p $[A_{11}|A_{12}] \leq$ rank_p A .

The improved bounds are sometimes tight!

$$
A = \begin{bmatrix} A_{11} & A_{12} \\ A_{12}^T & A_{22} \end{bmatrix}
$$

where rows (and columns) of A_{11} are indexed by points of the quadric (and tangent hyperplanes).

$$
A = \begin{bmatrix} A_{11} & A_{12} \\ A_{12}^T & A_{22} \end{bmatrix}
$$

where rows (and columns) of A_{11} are indexed by points of the quadric (and tangent hyperplanes).

Theorem (Blokhuis and M. (1995))

 $rank_{p}[A_{11}|A_{12}] = [(p+n-1) - (p+n-3)$ $\binom{n-3}{n}$ ^e + 1*.*

So there are no ovoids in quadrics if $p^{\lfloor n/2 \rfloor} > \binom{p+n-1}{p}$ *n*⁻¹) – (^{*p*+*n*-3}) *n .*

Ovoids in Triality Quadrics of $\mathbb{P}^7\mathbb{F}_q$, $q=2^e$

Ovoids have size $|\mathcal{O}| = q^3 + 1 = \text{rank}_2 A_{11}.$

Only known examples: Two infinite families (admitting *PSL*3(*q*), all *e*; and $PSU_3(q)$, *e* odd; and one sporadic example, $q=8$).

Ovoids have size $|\mathcal{O}| = q^3 + 1 = \text{rank}_3 A_{11}.$

Only known examples: Two infinite families (admitting *PSU*3(*q*), all e ; and ${}^2G_2(q)$, e odd).

Here $|O| = q^2 + 1 = \text{rank}_2 A$. *Only known examples:* Two infinite families (admitting *PSL*₂(q^2), all *e*; and ² $B_2(q)$, *e* odd). イロトメ 御下 メミトメモト

Ovoids in Triality Quadrics of $\mathbb{P}^7\mathbb{F}_q$, $q=2^e$

Ovoids have size $|\mathcal{O}| = q^3 + 1 = \text{rank}_2 A_{11}.$

Only known examples: Two infinite families (admitting $PSL₃(q)$, all *e*; and $PSU_3(q)$, *e* odd; and one sporadic example, $q=8$).

Ovoids have size $|\mathcal{O}| = q^3 + 1 = \text{rank}_3 A_{11}.$

Only known examples: Two infinite families (admitting *PSU*3(*q*), all e ; and ${}^2G_2(q)$, e odd).

Here $|O| = q^2 + 1 = \text{rank}_2 A$. *Only known examples:* Two infinite families (admitting *PSL*₂(q^2), all *e*; and ² $B_2(q)$, *e* odd). K ロメ K 御 K K 唐 K K 唐 K

Ovoids in Triality Quadrics of $\mathbb{P}^7\mathbb{F}_q$, $q=2^e$

Ovoids have size $|\mathcal{O}| = q^3 + 1 = \text{rank}_2 A_{11}.$

Only known examples: Two infinite families (admitting $PSL₃(q)$, all *e*; and $PSU_3(q)$, *e* odd; and one sporadic example, $q=8$).

Ovoids in Parabolic Quadrics of $\mathbb{P}^6\mathbb{F}_q$, $q=3^e$

Ovoids have size $|\mathcal{O}| = q^3 + 1 = \mathsf{rank}_3\,A_{11}.$

Only known examples: Two infinite families (admitting *PSU*3(*q*), all e ; and ${}^2G_2(q)$, e odd).

Here $|O| = q^2 + 1 = \text{rank}_2 A$. *Only known examples:* Two infinite families (admitting *PSL*₂(q^2), all *e*; and ² $B_2(q)$, *e* odd). **K ロ メ イ 団 メ メ ミ メ ス ミ メ**

Ovoids in Triality Quadrics of $\mathbb{P}^7\mathbb{F}_q$, $q=2^e$

Ovoids have size $|\mathcal{O}| = q^3 + 1 = \text{rank}_2 A_{11}.$

Only known examples: Two infinite families (admitting $PSL₃(q)$, all *e*; and $PSU_3(q)$, *e* odd; and one sporadic example, $q=8$).

Ovoids in Parabolic Quadrics of $\mathbb{P}^6\mathbb{F}_q$, $q=3^e$

Ovoids have size $|\mathcal{O}| = q^3 + 1 = \mathsf{rank}_3\,A_{11}.$

Only known examples: Two infinite families (admitting *PSU*3(*q*), all e ; and ${}^2G_2(q)$, e odd).

Ovoids in Triality Quadrics of $\mathbb{P}^7\mathbb{F}_q$, $q=2^e$

Ovoids have size $|\mathcal{O}| = q^3 + 1 = \text{rank}_2 A_{11}.$

Only known examples: Two infinite families (admitting $PSL₃(q)$, all *e*; and $PSU_3(q)$, *e* odd; and one sporadic example, $q=8$).

Ovoids in Parabolic Quadrics of $\mathbb{P}^6\mathbb{F}_q$, $q=3^e$

Ovoids have size $|\mathcal{O}| = q^3 + 1 = \mathsf{rank}_3\,A_{11}.$

Only known examples: Two infinite families (admitting *PSU*3(*q*), all e ; and ${}^2G_2(q)$, e odd).

Ovoids in Triality Quadrics of $\mathbb{P}^7\mathbb{F}_q$, $q=2^e$

Ovoids have size $|\mathcal{O}| = q^3 + 1 = \text{rank}_2 A_{11}.$

Only known examples: Two infinite families (admitting $PSL₃(q)$, all e ; and $PSU_3(q)$, e odd; and one sporadic example, $q=8$).

Ovoids in Parabolic Quadrics of $\mathbb{P}^6\mathbb{F}_q$, $q=3^e$

Ovoids have size $|\mathcal{O}| = q^3 + 1 = \mathsf{rank}_3\,A_{11}.$

Only known examples: Two infinite families (admitting *PSU*3(*q*), all e ; and ${}^2G_2(q)$, e odd).

Let *A* be the incidence matrix of points versus *k*-subspaces of $\mathbb{P}^n\mathbb{F}_{q},\,q=p^e.$ Let M be the $k\times k$ matrix whose (i,j) -entry equals the coefficient of t^{pi-j} in $(1+t+t^2+\cdots+t^{p-1})^{n+1}.$ Then

 $rank_{p} A = 1 + (coefficient of t^e in tr[(I - tM)⁻¹]).$

 $(1+t+\cdots+t^4)^3=1+4t+10t^2+20t^3+35t^4+\cdots+85t^8+80t^9+\cdots$ so $M = \lceil \frac{35}{20} \rceil$ $\begin{bmatrix} 80 \\ 85 \end{bmatrix}$ and $tr[(I - tM)^{-1}] = \frac{2(1-60t)}{1-120t+137}$ 1−120*t*+1375*t* 2 =2+120*t*+11650*t* ²+1233000*t* ³+131941250*t* ⁴+14137575000*t* ⁵+··· so rank₅ $A = 121, 11651,$ etc. for $q = 5, 25, \ldots$

Hamada's Formula (1968) also expresses rank*^p A* as a multiple sum, requiring exponential time to evaluat[e.](#page-30-0)

Let *A* be the incidence matrix of points versus *k*-subspaces of $\mathbb{P}^n\mathbb{F}_q$, $q = \rho^e$. Let M be the $k \times k$ matrix whose (i,j) -entry equals the coefficient of $t^{p i - j}$ in $(1 + t + t^2 + \cdots + t^{p - 1})^{n + 1}.$ Then

$$
\operatorname{rank}_p A = 1 + (\text{coefficient of } t^e \text{ in } tr[(l - tM)^{-1}]).
$$

 $(1+t+\cdots+t^4)^3=1+4t+10t^2+20t^3+35t^4+\cdots+85t^8+80t^9+\cdots$ so $M = \lceil \frac{35}{20} \rceil$ $\begin{bmatrix} 80 \\ 85 \end{bmatrix}$ and

$$
tr[(I - tM)^{-1}] = \frac{2(1-60t)}{1-120t+1375t^2}
$$

=2+120*t*+11650*t* ²+1233000*t* ³+131941250*t* ⁴+14137575000*t* ⁵+···

so rank₅ $A = 121, 11651,$ etc. for $q = 5, 25, \ldots$

Hamada's Formula (1968) also expresses rank*^p A* as a multiple sum, requiring exponential time to evaluat[e.](#page-31-0)

Let *A* be the incidence matrix of points versus *k*-subspaces of $\mathbb{P}^n\mathbb{F}_q$, $q = \rho^e$. Let M be the $k \times k$ matrix whose (i,j) -entry equals the coefficient of $t^{p i - j}$ in $(1 + t + t^2 + \cdots + t^{p - 1})^{n + 1}.$ Then

$$
\operatorname{rank}_p A = 1 + (\text{coefficient of } t^e \text{ in } tr[(l - tM)^{-1}]).
$$

Example: Points versus Lines of $\mathbb{P}^3\mathbb{F}_{5^e}$

 $(1+t+\cdots+t^4)^3=1+4t+10t^2+20t^3+35t^4+\cdots+85t^8+80t^9+\cdots$ so $M = \lceil \frac{35}{20} \rceil$ 20 $\begin{bmatrix} 80 \ 85 \end{bmatrix}$ and $tr[(I - tM)^{-1}] = \frac{2(1-60t)}{1-120t+137}$ 1−120*t*+1375*t* 2 =2+120*t*+11650*t* ²+1233000*t* ³+131941250*t* ⁴+14137575000*t* ⁵+··· so rank₅ $A = 121, 11651,$ etc. for $q = 5, 25, \ldots$.

Hamada's Formula (1968) also expresses rank*^p A* as a multiple sum, requiring exponential time to evaluat[e.](#page-32-0)

Let *A* be the incidence matrix of points versus *k*-subspaces of $\mathbb{P}^n\mathbb{F}_q$, $q = \rho^e$. Let M be the $k \times k$ matrix whose (i,j) -entry equals the coefficient of $t^{p i - j}$ in $(1 + t + t^2 + \cdots + t^{p - 1})^{n + 1}.$ Then

$$
\operatorname{rank}_p A = 1 + (\text{coefficient of } t^e \text{ in } tr[(l - tM)^{-1}]).
$$

Example: Points versus Lines of $\mathbb{P}^3\mathbb{F}_{5^e}$

 $(1+t+\cdots+t^4)^3=1+4t+10t^2+20t^3+35t^4+\cdots+85t^8+80t^9+\cdots$ so $M = \lceil \frac{35}{20} \rceil$ 20 $\begin{bmatrix} 80 \ 85 \end{bmatrix}$ and $tr[(I - tM)^{-1}] = \frac{2(1-60t)}{1-120t+137}$ 1−120*t*+1375*t* 2 =2+120*t*+11650*t* ²+1233000*t* ³+131941250*t* ⁴+14137575000*t* ⁵+··· so rank₅ $A = 121, 11651,$ etc. for $q = 5, 25, \ldots$.

Hamada's Formula (1968) also expresses rank*^p A* as a multiple sum, requiring exponential time to evaluat[e.](#page-33-0)

Choose homogeneous coordinates x_0, x_1, \ldots, x_n for \mathbb{P}^nF , $\mathbf{F} = \mathbb{F}_{q}, \, q = p^e$. The polynomial ring $R = F[x_0, x_1, \ldots, x_n]$ is graded by degree:

where *R^k* consists of *k*-homogeneous polynomials in x_0, x_1, \ldots, x_n . Let $\mathfrak{I} \subseteq R$ be a homogeneous ideal, i.e. \mathfrak{I} is generated by a set of homogeneous polynomials. The points of \mathbb{P}^n *F* where all $f \in \mathfrak{I}$ vanish is an algebraic point set $\mathcal{Z}(\mathfrak{I}).$ We want to know rank_p A_1 where

 $R = \bigoplus R_k$ *k*>0

 $A =$ Г $\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \end{array} \end{array} \end{array} \end{array}$ $A_1 = A_3$ *A*2 l. $\mathcal{Z}(\mathfrak{I})$

here rows and columns of A_1 are indexed by points of $\mathcal{Z}(\mathfrak{I})$, and *all* hyperplanes of \mathbb{P}^nF . 4 ロ) (何) (日) (日)

Choose homogeneous coordinates x_0, x_1, \ldots, x_n for \mathbb{P}^nF , $\mathcal{F} = \mathbb{F}_q, q = \rho^e$. The polynomial ring $R = \mathcal{F}[x_0, x_1, \ldots, x_n]$ is graded by degree:

where *R^k* consists of *k*-homogeneous polynomials in

 x_0, x_1, \ldots, x_n . Let $\mathfrak{I} \subseteq R$ be a homogeneous ideal, i.e. \mathfrak{I} is generated by a set of homogeneous polynomials. The points of \mathbb{P}^n *F* where all $f \in \mathfrak{I}$ vanish is an algebraic point set $\mathcal{Z}(\mathfrak{I}).$ We want to know rank_p A_1 where

 $R = \bigoplus R_k$ *k*>0

here rows and columns of A_1 are indexed by points of $\mathcal{Z}(\mathfrak{I})$, and *all* hyperplanes of \mathbb{P}^nF . 4 ロ) (何) (日) (日)

 $A_1 = A_3$

*A*2

 $A =$

Г

 $\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \end{array} \end{array} \end{array} \end{array}$

l.

 $\mathcal{Z}(\mathfrak{I})$

Choose homogeneous coordinates x_0, x_1, \ldots, x_n for \mathbb{P}^nF , $\mathcal{F} = \mathbb{F}_q, q = \rho^e$. The polynomial ring $R = \mathcal{F}[x_0, x_1, \ldots, x_n]$ is graded by degree:

> $R = \bigoplus R_k$ *k*>0

where *R^k* consists of *k*-homogeneous polynomials in x_0, x_1, \ldots, x_n . Let $\mathfrak{I} \subseteq R$ be a homogeneous ideal, i.e. \mathfrak{I} is generated by a set of homogeneous polynomials. The points of \mathbb{P}^n *F* where all $f \in \mathfrak{I}$ vanish is an algebraic point set $\mathcal{Z}(\mathfrak{I}).$ We want to know rank_p A_1 where

> $A =$ Г $\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}\\ \end{array} \end{array} \end{array} \end{array}$ $A_1 = A_3$ *A*2 l. $\mathcal{Z}(\mathfrak{I})$

here rows and columns of A_1 are indexed by points of $\mathcal{Z}(\mathfrak{I})$, and *all* hyperplanes of \mathbb{P}^nF . 4 ロ) (何) (日) (日)

Choose homogeneous coordinates x_0, x_1, \ldots, x_n for \mathbb{P}^nF , $\mathcal{F} = \mathbb{F}_q, q = \rho^e$. The polynomial ring $R = \mathcal{F}[x_0, x_1, \ldots, x_n]$ is graded by degree:

$$
R=\bigoplus_{k\geqslant 0}R_k
$$

where *R^k* consists of *k*-homogeneous polynomials in x_0, x_1, \ldots, x_n . Let $\mathfrak{I} \subseteq R$ be a homogeneous ideal, i.e. \mathfrak{I} is generated by a set of homogeneous polynomials. The points of *IP***ⁿF** where all *f* ∈ J vanish is an algebraic point set $\mathcal{Z}(3)$. We

want to know rank_p A_1 where

$$
A = \begin{bmatrix} A_1 = A_3 \\ A_2 \end{bmatrix} \begin{bmatrix} \frac{1}{2}(\mathfrak{I}) \\ \vdots \end{bmatrix}
$$

here rows and columns of A_1 are indexed by points of $\mathcal{Z}(\mathfrak{I})$, and *all* hyperplanes of \mathbb{P}^nF . **≮ロト ⊀ 何 ト ⊀ ヨ ト ⊀ ヨ ト**

Choose homogeneous coordinates x_0, x_1, \ldots, x_n for \mathbb{P}^nF , $\mathcal{F} = \mathbb{F}_q, q = \rho^e$. The polynomial ring $R = \mathcal{F}[x_0, x_1, \ldots, x_n]$ is graded by degree:

$$
R=\bigoplus_{k\geqslant 0}R_k
$$

where *R^k* consists of *k*-homogeneous polynomials in x_0, x_1, \ldots, x_n . Let $\mathfrak{I} \subseteq R$ be a homogeneous ideal, i.e. \mathfrak{I} is generated by a set of homogeneous polynomials. The points of \mathbb{P}^n *F* where all $f \in \mathfrak{I}$ vanish is an algebraic point set $\mathcal{Z}(\mathfrak{I})$. We want to know rank_p A_1 where

A = *A*¹ = *A*^I *A*2 Z(I) ;

here rows and columns of A_1 are indexed by points of $\mathcal{Z}(1)$, and *all* hyperplanes of \mathbb{P}^nF . **≮ロト ⊀ 何 ト ⊀ ヨ ト ⊀ ヨ ト**

$$
R/\mathfrak{I}=\bigoplus_{k\geqslant 0}(R_k/\mathfrak{I}_k).
$$

The Hilbert function of $\mathfrak I$ is $h_{\mathfrak I}(k) = \dim \bigl(R_k/\mathfrak I_k\bigr)$. The generating function for its sequence of values is the Hilbert series

$$
\mathsf{Hilb}_{\mathfrak{I}}(t)=\sum_{k\geqslant 0}h_{\mathfrak{I}}(k)t^k
$$

which is actually a rational function $Hilb_{\gamma}(t) \in \mathbb{O}(t)$. That is, for $k \gg 0$, $h_1(k)$ coincides with a polynomial. This is the Hilbert polynomial of \mathfrak{I} , whose leading term $m^{k^o}_d$ *d*! defines the degree *m* and dimension *d* of $\mathcal{Z}(\mathfrak{I})$.

K ロ ト K 伊 ト K ヨ

$$
R/\mathfrak{I}=\bigoplus_{k\geqslant 0}(R_k/\mathfrak{I}_k).
$$

The Hilbert function of $\mathfrak I$ is $h_{\mathfrak I}(k) = \dim \bigl(R_k/\mathfrak I_k\bigr)$. The generating function for its sequence of values is the Hilbert series

$$
\mathsf{Hilb}_{\mathfrak{I}}(t)=\sum_{k\geqslant 0}h_{\mathfrak{I}}(k)t^k
$$

which is actually a rational function $Hilb_{\gamma}(t) \in \mathbb{O}(t)$. That is, for $k \gg 0$, $h_1(k)$ coincides with a polynomial. This is the Hilbert polynomial of \mathfrak{I} , whose leading term $m^{k^o}_d$ *d*! defines the degree *m* and dimension *d* of $\mathcal{Z}(\mathfrak{I})$.

K ロ ト K 伊 ト K ヨ

$$
R/\mathfrak{I}=\bigoplus_{k\geqslant 0}(R_k/\mathfrak{I}_k).
$$

The Hilbert function of \mathfrak{I} **is** $h_{\mathfrak{I}}(k) = \dim \bigl(R_k/\mathfrak{I}_k\bigr)$ **. The generating** function for its sequence of values is the Hilbert series

$$
\mathsf{Hilb}_{\mathfrak{I}}(t)=\sum_{k\geqslant 0}h_{\mathfrak{I}}(k)t^k
$$

which is actually a rational function $Hilb_{\gamma}(t) \in \mathbb{O}(t)$. That is, for $k \gg 0$, $h_1(k)$ coincides with a polynomial. This is the Hilbert polynomial of \mathfrak{I} , whose leading term $m^{k^o}_d$ *d*! defines the degree *m* and dimension *d* of $\mathcal{Z}(\mathfrak{I})$.

K ロ ト K 伊 ト K ヨ

$$
R/\mathfrak{I}=\bigoplus_{k\geqslant 0}(R_k/\mathfrak{I}_k).
$$

The Hilbert function of $\mathfrak I$ is $h_{\mathfrak I}(k) = \dim \bigl(R_k/\mathfrak I_k \bigr)$. The generating function for its sequence of values is the Hilbert series

$$
\mathsf{Hilb}_{\mathfrak{I}}(t)=\sum_{k\geqslant 0}h_{\mathfrak{I}}(k)t^{k}
$$

which is actually a rational function Hilb_{I}(*t*) $\in \mathbb{Q}(t)$. That is, for $k \gg 0$, $h_1(k)$ coincides with a polynomial. This is the Hilbert polynomial of \mathfrak{I} , whose leading term $m^{k^o}_d$ *d*! defines the degree *m* and dimension *d* of $\mathcal{Z}(\mathfrak{I})$.

K ロ ▶ K 伊 ▶ K ヨ ▶

$$
R/\mathfrak{I}=\bigoplus_{k\geqslant 0}(R_k/\mathfrak{I}_k).
$$

The Hilbert function of $\mathfrak I$ is $h_{\mathfrak I}(k) = \dim \bigl(R_k/\mathfrak I_k \bigr)$. The generating function for its sequence of values is the Hilbert series

$$
\mathsf{Hilb}_{\mathfrak{I}}(t)=\sum_{k\geqslant 0}h_{\mathfrak{I}}(k)t^{k}
$$

which is actually a rational function $Hilb₁(t) \in \mathbb{O}(t)$. That is, for $k \gg 0$, $h_0(k)$ coincides with a polynomial. This is the Hilbert polynomial of \mathfrak{I} , whose leading term $m^{k^o}_d$ *d*! defines the degree *m* and dimension *d* of $\mathcal{Z}(\mathfrak{I})$.

K ロ ▶ K 伊 ▶ K ヨ ▶

$$
R/\mathfrak{I}=\bigoplus_{k\geqslant 0}(R_k/\mathfrak{I}_k).
$$

The Hilbert function of $\mathfrak I$ is $h_{\mathfrak I}(k) = \dim \bigl(R_k/\mathfrak I_k \bigr)$. The generating function for its sequence of values is the Hilbert series

$$
\mathsf{Hilb}_{\mathfrak{I}}(t)=\sum_{k\geqslant 0}h_{\mathfrak{I}}(k)t^{k}
$$

which is actually a rational function $Hilb_{\mathcal{I}}(t) \in \mathbb{Q}(t)$. That is, for $k \gg 0$, $h_1(k)$ coincides with a polynomial. This is the Hilbert polynomial of \mathfrak{I} , whose leading term $m^{k^{\alpha}}$ *d*! defines the degree *m* and dimension d of $\mathcal{Z}(\mathfrak{I})$.

 $\mathfrak{I}=(0)$ has zero set $\mathcal{Z}((0))=\mathbb{P}^n$ F with Hilbert function

$$
h_{(0)}(k) = \dim(R_k/(0)) = \dim R_k = \binom{k+n}{n}
$$

= $\frac{1}{n!}(k+1)(k+2)\cdots(k+n)$.

The leading term *^k n* $\frac{k^n}{n!}$ tells us that \mathbb{P}^n F has dimension *n* and degree 1.

The Hilbert series is

$$
\mathrm{Hilb}_{(0)}(t) \, = \, \sum_{k \geqslant 0} \binom{k+n}{n} t^k \, = \, \frac{1}{(1-t)^{n+1}} \, .
$$

 $\mathfrak{I}=(0)$ has zero set $\mathcal{Z}((0))=\mathbb{P}^n$ F with Hilbert function

$$
h_{(0)}(k) = \dim(R_k/(0)) = \dim R_k = \binom{k+n}{n}
$$

= $\frac{1}{n!}(k+1)(k+2)\cdots(k+n)$.

The leading term *^k n* $\frac{k^n}{n!}$ tells us that \mathbb{P}^n F has dimension n and degree 1.

The Hilbert series is

$$
\mathrm{Hilb}_{(0)}(t) \, = \, \sum_{k \geqslant 0} \binom{k+n}{n} t^k \, = \, \frac{1}{(1-t)^{n+1}} \, .
$$

 $\mathfrak{I}=(0)$ has zero set $\mathcal{Z}((0))=\mathbb{P}^n$ F with Hilbert function

$$
h_{(0)}(k) = \dim(R_k/(0)) = \dim R_k = \binom{k+n}{n}
$$

= $\frac{1}{n!}(k+1)(k+2)\cdots(k+n)$.

The leading term *^k n* $\frac{k^n}{n!}$ tells us that \mathbb{P}^n F has dimension n and degree 1.

The Hilbert series is

$$
\mathrm{Hilb}_{(0)}(t) \, = \, \sum_{k\geqslant 0} \binom{k+n}{n} t^k \, = \, \frac{1}{(1-t)^{n+1}} \, .
$$

A quadric $\mathcal{Z}(Q)$ is the zero set of a homogeneous quadratic *polynomial* $Q(x_0, x_1, ..., x_n) \in R_2$.

 $\mathfrak{I} = (Q)$ and $\mathfrak{I}_k = QR_{k-2}$ for $k \geq 2$. $(\mathfrak{I}_0 = \mathfrak{I}_1 = 0)$.

The Hilbert function is

$$
h_{(Q)}(k) = \begin{cases} 0, & \text{for } k = 0, 1; \\ \binom{k+n}{n} - \binom{k+n-2}{n}, & \text{for } k \geq 2. \end{cases}
$$

The leading term 2 $\frac{k^{n-1}}{(n-1)!}$ tells us that the quadric has dimension *n*−1 and degree 2.

The value $h_{(Q)}(p-1) = \binom{p+n-1}{n}$ *n*⁻¹) – $\binom{p+n-3}{n}$ ⁿ⁻³) gives $\mathsf{rank}_{\rho}\,\mathcal{A}_{(\mathit{Q})}=\vec{1}+\mathit{h}_{(\mathit{Q})}(\rho-1)$ over the prime field $\mathcal{F}=\mathbb{F}_{\rho}.$

A generalization is known for $F = \mathbb{F}_{p^e}$.

 4 ロ } 4 6 } 4 3 } 4

A quadric $\mathcal{Z}(Q)$ is the zero set of a homogeneous quadratic *polynomial* $Q(x_0, x_1, ..., x_n) \in R_2$.

 $\mathfrak{I} = (Q)$ and $\mathfrak{I}_k = QR_{k-2}$ for $k \geq 2$. $(\mathfrak{I}_0 = \mathfrak{I}_1 = 0)$.

The Hilbert function is

$$
h_{(Q)}(k) = \begin{cases} 0, & \text{for } k = 0, 1; \\ \binom{k+n}{n} - \binom{k+n-2}{n}, & \text{for } k \geq 2. \end{cases}
$$

The leading term 2 $\frac{k^{n-1}}{(n-1)!}$ tells us that the quadric has dimension *n*−1 and degree 2.

The value $h_{(Q)}(p-1) = \binom{p+n-1}{n}$ *n*⁻¹) – $\binom{p+n-3}{n}$ ⁿ⁻³) gives $\mathsf{rank}_{\rho}\,\mathcal{A}_{(\mathit{Q})}=\vec{1}+\mathit{h}_{(\mathit{Q})}(\rho-1)$ over the prime field $\mathcal{F}=\mathbb{F}_{\rho}.$

A generalization is known for $F = \mathbb{F}_{p^e}$.

 4 ロ } 4 6 } 4 3 } 4

A quadric $\mathcal{Z}(Q)$ is the zero set of a homogeneous quadratic polynomial $Q(x_0, x_1, \ldots, x_n) \in R_2$.

$$
\mathfrak{I}=(Q) \text{ and } \mathfrak{I}_k=QR_{k-2} \text{ for } k \geqslant 2. \ \ (\mathfrak{I}_0=\mathfrak{I}_1=0.)
$$

The Hilbert function is

$$
h_{(Q)}(k) = \begin{cases} 0, & \text{for } k = 0, 1; \\ \binom{k+n}{n} - \binom{k+n-2}{n}, & \text{for } k \geq 2. \end{cases}
$$

The leading term 2 $\frac{k^{n-1}}{(n-1)!}$ tells us that the quadric has dimension *n*−1 and degree 2.

The value $h_{(Q)}(p-1) = \binom{p+n-1}{n}$ *n*⁻¹) – $\binom{p+n-3}{n}$ ⁿ⁻³) gives $\mathsf{rank}_{\rho}\,\mathcal{A}_{(\mathit{Q})}=\vec{1}+\mathit{h}_{(\mathit{Q})}(\rho-1)$ over the prime field $\mathcal{F}=\mathbb{F}_{\rho}.$

A generalization is known for $F = \mathbb{F}_{p^e}$.

K ロ メ イ 団 メ ス ミ メ

A quadric $\mathcal{Z}(Q)$ is the zero set of a homogeneous quadratic *polynomial* $Q(x_0, x_1, ..., x_n) \in R_2$.

$$
\mathfrak{I}=(Q) \text{ and } \mathfrak{I}_k=QR_{k-2} \text{ for } k \geqslant 2. \ \ (\mathfrak{I}_0=\mathfrak{I}_1=0.)
$$

The Hilbert function is

$$
h_{(Q)}(k) = \begin{cases} 0, & \text{for } k = 0, 1; \\ \binom{k+n}{n} - \binom{k+n-2}{n}, & \text{for } k \geq 2. \end{cases}
$$

The leading term 2 $\frac{k^{n-1}}{(n-1)!}$ tells us that the quadric has dimension *n*−1 and degree 2.

The value $h_{(Q)}(p-1) = \binom{p+n-1}{n}$ *n*⁻¹) – $\binom{p+n-3}{n}$ ⁿ⁻³) gives $\mathsf{rank}_{\rho}\,\mathcal{A}_{(\mathit{Q})}=\vec{1}+\mathit{h}_{(\mathit{Q})}(\rho-1)$ over the prime field $\mathcal{F}=\mathbb{F}_{\rho}.$

A generalization is known for $F = \mathbb{F}_{p^e}$.

 $($ ロ } $($ θ } $($ θ } $)$

A quadric $\mathcal{Z}(Q)$ is the zero set of a homogeneous quadratic *polynomial* $Q(x_0, x_1, ..., x_n) \in R_2$.

$$
\mathfrak{I}=(Q) \text{ and } \mathfrak{I}_k=QR_{k-2} \text{ for } k \geqslant 2. \ \ (\mathfrak{I}_0=\mathfrak{I}_1=0.)
$$

The Hilbert function is

$$
h_{(Q)}(k) = \begin{cases} 0, & \text{for } k = 0, 1; \\ \binom{k+n}{n} - \binom{k+n-2}{n}, & \text{for } k \geq 2. \end{cases}
$$

The leading term 2 $\frac{k^{n-1}}{(n-1)!}$ tells us that the quadric has dimension *n*−1 and degree 2.

The value $h_{(Q)}(p-1) = \binom{p+n-1}{n}$ *n*⁻¹) – $\binom{p+n-3}{n}$ ⁿ⁻³) gives rank $_{\rho}$ $A_{(Q)} = 1 + h_{(Q)}(p-1)$ over the prime field $F = \mathbb{F}_\rho$.

A generalization is known for $F = \mathbb{F}_{p^e}$.

K ロ ト K 伊 ト K ヨ ト

A quadric $\mathcal{Z}(Q)$ is the zero set of a homogeneous quadratic *polynomial* $Q(x_0, x_1, ..., x_n) \in R_2$.

$$
\mathfrak{I}=(Q) \text{ and } \mathfrak{I}_k=QR_{k-2} \text{ for } k \geqslant 2. \ \ (\mathfrak{I}_0=\mathfrak{I}_1=0.)
$$

The Hilbert function is

$$
h_{(Q)}(k) = \begin{cases} 0, & \text{for } k = 0, 1; \\ \binom{k+n}{n} - \binom{k+n-2}{n}, & \text{for } k \geq 2. \end{cases}
$$

The leading term 2 $\frac{k^{n-1}}{(n-1)!}$ tells us that the quadric has dimension *n*−1 and degree 2.

The value $h_{(Q)}(p-1) = \binom{p+n-1}{n}$ *n*⁻¹) – $\binom{p+n-3}{n}$ ⁿ⁻³) gives rank $_{\rho}$ $A_{(Q)} = 1 + h_{(Q)}(p-1)$ over the prime field $F = \mathbb{F}_\rho$.

A generalization is known for $F = \mathbb{F}_{p^e}$.

K ロ ▶ K 伊 ▶ K ヨ ▶

We have also computed rank_{p} A_1 for several other algebraic sets $\mathcal{Z}(\mathfrak{I})$, including hermitian varieties and Grassmann varieties.

In particular, we get bounds for ovoids in other finite classical polar spaces.

Disclaimer: In general, the ideal $\mathfrak{I} \subseteq R$ needs to be replaced by a slightly larger ideal:

$$
\mathfrak{I} \subseteq \widehat{\mathfrak{I}} = \sqrt{\mathfrak{I} + J} \subseteq R
$$

where $J = (x_i^q)$ $X_j - X_i X_j^q$ $\frac{q}{j}$: *i*,*j*).

Here \Im is the set of all $f \in R$ vanishing on $\mathcal{Z}(\Im)$.

In place of $h_3(p-1)$ we should really have $h_3(p-1)$; but in many
cottings we show that these two values agree. settings, we show that these two values agree.

←ロト ←何 ト ← ヨ ト ← ヨ ト

We have also computed rank_{p} A_1 for several other algebraic sets $\mathcal{Z}(\mathfrak{I})$, including hermitian varieties and Grassmann varieties.

In particular, we get bounds for ovoids in other finite classical polar spaces.

Disclaimer: In general, the ideal $\mathfrak{I} \subseteq R$ needs to be replaced by a slightly larger ideal:

$$
\mathfrak{I} \subseteq \widehat{\mathfrak{I}} = \sqrt{\mathfrak{I} + J} \subseteq R
$$

where $J = (x_i^q)$ $X_j - X_i X_j^q$ $\frac{q}{j}$: *i*,*j*).

Here $\hat{\mathfrak{I}}$ is the set of all $f \in R$ vanishing on $\mathcal{Z}(\mathfrak{I})$.

In place of $h_3(p-1)$ we should really have $h_3(p-1)$; but in many
cottings we show that these two values agree. settings, we show that these two values agree.

 $($ ロ) $($ $($ \mathbb{P}) $($ \mathbb{R}) $($ \mathbb{R} $)$

We have also computed rank_{p} A_1 for several other algebraic sets $\mathcal{Z}(\mathfrak{I})$, including hermitian varieties and Grassmann varieties.

In particular, we get bounds for ovoids in other finite classical polar spaces.

Disclaimer: In general, the ideal $\mathfrak{I} \subseteq R$ needs to be replaced by a slightly larger ideal:

$$
\mathfrak{I}\subseteq\widehat{\mathfrak{I}}=\sqrt{\mathfrak{I}+J}\subseteq R
$$

where $J = (x_i^q)$ $\int_i^q x_j - x_i x_j^q$ $\frac{q}{j}$: *i*,*j*).

Here $\hat{\mathfrak{I}}$ is the set of all $f \in R$ vanishing on $\mathcal{Z}(\mathfrak{I})$. In place of $h_3(p-1)$ we should really have $h_3(p-1)$; but in many
cottings we show that these two values agree. settings, we show that these two values agree.

 $\Box \rightarrow \neg \left(\neg \overline{\partial} \right) \rightarrow \neg \left(\exists \rightarrow \neg \left(\exists \rightarrow \right) \right)$

We have also computed rank_p A_1 for several other algebraic sets $\mathcal{Z}(\mathfrak{I})$, including hermitian varieties and Grassmann varieties.

In particular, we get bounds for ovoids in other finite classical polar spaces.

Disclaimer: In general, the ideal $\mathfrak{I} \subseteq R$ needs to be replaced by a slightly larger ideal:

$$
\mathfrak{I} \subseteq \widehat{\mathfrak{I}} = \sqrt{\mathfrak{I} + J} \subseteq R
$$

where $J = (x_i^q)$ $\int_i^q x_j - x_i x_j^q$ $\frac{q}{j}$: *i*,*j*).

Here $\widehat{\mathfrak{I}}$ is the set of all $f \in R$ vanishing on $\mathcal{Z}(\mathfrak{I})$.

In place of $h_3(p-1)$ we should really have $h_3(p-1)$; but in many
cottings we show that these two values agree. settings, we show that these two values agree.

(ロトメ個) メモトメモト

We have also computed rank_{*p*} A_1 for several other algebraic sets $\mathcal{Z}(\mathfrak{I})$, including hermitian varieties and Grassmann varieties.

In particular, we get bounds for ovoids in other finite classical polar spaces.

Disclaimer: In general, the ideal $\mathfrak{I} \subseteq R$ needs to be replaced by a slightly larger ideal:

$$
\mathfrak{I}\subseteq\widehat{\mathfrak{I}}=\sqrt{\mathfrak{I}+J}\subseteq R
$$

where $J = (x_i^q)$ $\int_i^q x_j - x_i x_j^q$ $\frac{q}{j}$: *i*,*j*).

Here $\widehat{\mathfrak{I}}$ is the set of all $f \in R$ vanishing on $\mathcal{Z}(\mathfrak{I})$.

In place of $h_3(p-1)$ we should really have $h_3(p-1)$; but in many settings, we show that these two values agree.

A classical generalized quadrangle of order (*q*, *q*) has *q*+1 points on each line and $q+1$ lines through each point, $q = p^e.$ Let *A* be its incidence matrix.

For
$$
q = 2^e
$$
, $\text{rank}_p A = 1 + \left(\frac{1 + \sqrt{17}}{2}\right)^{2e} + \left(\frac{1 - \sqrt{17}}{2}\right)^{2e}$.
For $q = p$, $\text{rank}_p A = 1 + \frac{p(p+1)^2}{2}$.
For $q = p^e$, p odd, $\text{rank}_p A = 1 + \alpha_+^e + \alpha_-^e$ where

 $\alpha_{\pm} = \frac{p(p+1)^2}{4} \pm \frac{p(p^2-1)}{12}$

17*.*

K ロ ⊁ K 個 ≯ K 差 ⊁ K

A classical generalized quadrangle of order (*q*, *q*) has *q*+1 points on each line and $q+1$ lines through each point, $q = p^e.$ Let *A* be its incidence matrix.

Theorem (Sastry and Sin, 1996; de Caen and M., 2000; Chandler, Sin and Xiang, 2006)

For
$$
q = 2^e
$$
, $\text{rank}_p A = 1 + \left(\frac{1+\sqrt{17}}{2}\right)^{2e} + \left(\frac{1-\sqrt{17}}{2}\right)^{2e}$.

For
$$
q = p
$$
, $\text{rank}_p A = 1 + \frac{p(p+1)^2}{2}$.

For
$$
q = p^e
$$
, *p* odd, $rank_p A = 1 + \alpha_+^e + \alpha_-^e$ where

$$
\alpha_{\pm} = \frac{p(p+1)^2}{4} \pm \frac{p(p^2-1)}{12} \sqrt{17}.
$$

Let *p* be prime. Any generalized quadrangle of order (*n*, *n*) has $rank_{p} A \geqslant n^2 + 1$ (de Caen, Godsil and Royle, 1992).

The classical GQ of order (5, 5) has *p*-rank equal to 91. The lower bound is 26.

Q: Improve the lower bound for *p*-ranks of GQ's of order (q, q) .

K ロ ▶ K 伊 ▶ K ヨ

Let *p* be prime. Any generalized quadrangle of order (*n*, *n*) has $\mathsf{rank}_\rho A \geqslant n^2+1$ (de Caen, Godsil and Royle, 1992).

The classical GQ of order (5, 5) has *p*-rank equal to 91. The lower bound is 26.

Q: Improve the lower bound for *p*-ranks of GQ's of order (q, q) .

K ロ ト K 伊 ト K ヨ ト

Let *p* be prime. Any generalized quadrangle of order (*n*, *n*) has $\mathsf{rank}_\rho A \geqslant n^2+1$ (de Caen, Godsil and Royle, 1992).

The classical GQ of order (5, 5) has *p*-rank equal to 91. The lower bound is 26.

Q: Improve the lower bound for *p*-ranks of GQ's of order (q, q) .

K ロ ト K 伊 ト K ヨ ト

Let *p* be prime. Any generalized quadrangle of order (*n*, *n*) has $\mathsf{rank}_\rho A \geqslant n^2+1$ (de Caen, Godsil and Royle, 1992).

The classical GQ of order (5, 5) has *p*-rank equal to 91. The lower bound is 26.

Q: Improve the lower bound for *p*-ranks of GQ's of order (q, q) .

