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p-Ranks of Finite Projective Planes

Let Π be a projective plane of order n with incidence matrix A.

Let p be a prime dividing n. (Only primes dividing n are of
interest.)

The p-rank of Π is the rank of A over a field of characteristic p.
This is an isomorphism invariant of Π (in fact, the easiest such
invariant to compute).

Since AAT = nI + J, we have the trivial upper bound
rankp A 6 1

2

(
n2+n+2

)
whenever p

∣∣n. Equality holds if p = n.

The best known lower bound is rankp A > n3/2+1 (Bruen and
Ott, 1990; de Caen, Godsil and Royle, 1992).
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5-Ranks of Projective Planes of order 25

There are 99 known projective planes of order 25. Their
5-ranks are

2261, 2391, 2511, 2531, 2551, 2561, 2571, 2583, 2593,

2602, 2612, 2625, 2642, 2661, 2683, 2691, 2711, 2722,

2731, 2743, 2754, 2766, 2776, 27812, 27927, 2806, 2861, 3001

where r k indicates k planes of rank r .

The plane with smallest 5-rank is the classical plane P2F25. The
largest 5-rank occurs for a derived Hughes plane.

Computation of p-rank is difficult for large matrices not because
of execution time, but due to limits on available RAM.
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Open Questions

Q: Does P2Fq have the smallest p-rank among all projective
planes of order q = pe? (The Hamada-Sachar Conjecture).

Q: Improve the upper and lower bounds for rankp A in
general. For n = 25 we know 126 6 rankp A 6 326, but all
known planes have p-rank in the interval [226,300].

Q: Improve the known upper bound for p-ranks of translation
planes (Key and MacKenzie, 1991). For q = 25 this upper
bound is 296; the translation planes have rank 6 264.
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p-Ranks and Related/Current Work

The study of p-ranks of incidence matrices extends naturally to
questions about Smith Normal Forms and decomposition of the
associated Fp-codes as FpG-modules.

Edward Assmus Richard Wilson Andries Brouwer Peter Sin Qing Xiang

The study of p-ranks uses tools from algebraic geometry,
number theory and modular representation theory. It has
applications in finite geometry; but the biggest question
remains the search for more such applications.
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Points versus Hyperplanes in Projective Space

Let A be the incidence matrix of points versus hyperplanes in
PnFq, q=pe. Then

rankp A =
(p+n−1

n

)e
+ 1.

Theorem (Blokhuis and M., 1995)

If pbn/2c >
(p+n−1

n

)
, then quadrics in PnFq contain no ovoids.

In particular, there are no ovoids in quadrics in P9F2e , P9F3e ,
P11F5e , P11F7e , etc.

Proof. If O = {P1,P2, . . . ,Pm} is an ovoid, then the points of O
and the hyperplanes P⊥1 , . . . ,P

⊥
m index the rows and columns of

an identity submatrix Im in A. Comparing p-ranks,

m = pbn/2ce+1 6
(p+n−1

n

)e
+1.
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An Improvement

A quadric partitions the point-hyperplane incidence matrix of
PnFq as

A =


A11 A12

AT
12 A22


where rows (and columns) of A11 are indexed by points of the
quadric (and tangent hyperplanes).

Sharper bounds for ovoids follow from
|O| = m 6 rankp A11 6 rankp[A11|A12] 6 rankp A.

The improved bounds are sometimes tight!
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Instances when the p-Rank Bound is Tight

Ovoids in Triality Quadrics of P7Fq, q = 2e

Ovoids have size |O| = q3 + 1 = rank2 A11.
Only known examples: Two infinite families (admitting PSL3(q),
all e; and PSU3(q), e odd; and one sporadic example, q=8).

Ovoids in Parabolic Quadrics of P6Fq, q = 3e

Ovoids have size |O| = q3 + 1 = rank3 A11.
Only known examples: Two infinite families (admitting PSU3(q),
all e; and 2G2(q), e odd).

Ovoids of P3Fq, q = 2e. (q2+1 points, no three points collinear)
Here |O| = q2 + 1 = rank2 A.
Only known examples: Two infinite families (admitting
PSL2(q2), all e; and 2B2(q), e odd).
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Points versus k -subspaces of PnFq

Let A be the incidence matrix of points versus k -subspaces of
PnFq, q = pe. Let M be the k × k matrix whose (i , j)-entry
equals the coefficient of tpi−j in (1 + t + t2 + · · ·+ tp−1)n+1. Then

rankp A = 1 +
(
coefficient of te in tr

[
(I − tM)−1]).

Example: Points versus Lines of P3F5e

(1+t+ · · ·+t4)3 = 1+4t+10t2+20t3+35t4+ · · ·+85t8+80t9+ · · ·
so M =

[35
20

80
85

]
and

tr
[
(I − tM)−1] = 2(1−60t)

1−120t+1375t2

=2+120t+11650t2+1233000t3+131941250t4+14137575000t5+···

so rank5 A = 121, 11651, etc. for q = 5,25, . . ..

Hamada’s Formula (1968) also expresses rankp A as a multiple
sum, requiring exponential time to evaluate.
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p-Ranks of Algebraic Sets of Points vs. Hyperplanes

Choose homogeneous coordinates x0, x1, . . . , xn for PnF ,
F = Fq, q = pe. The polynomial ring R = F [x0, x1, . . . , xn] is
graded by degree:

R =
⊕
k>0

Rk

where Rk consists of k -homogeneous polynomials in
x0, x1, . . . , xn. Let I ⊆ R be a homogeneous ideal, i.e. I is
generated by a set of homogeneous polynomials. The points of
PnF where all f ∈ I vanish is an algebraic point set Z(I). We
want to know rankp AI where

A =


A1 = AI

A2


}
Z(I)

;

here rows and columns of AI are indexed by points of Z(I),
and all hyperplanes of PnF .
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Hilbert Functions

The homogeneous ideal I =
⊕

k>0Ik where Ik = I ∩ Rk also
has a grading quotient ring

R/I =
⊕
k>0

(
Rk/Ik

)
.

The Hilbert function of I is hI(k) = dim
(
Rk/Ik

)
. The generating

function for its sequence of values is the Hilbert series

HilbI(t) =
∑
k>0

hI(k)tk

which is actually a rational function HilbI(t) ∈ Q(t). That is, for
k >> 0, hI(k) coincides with a polynomial. This is the Hilbert
polynomial of I, whose leading term m kd

d! defines the degree m
and dimension d of Z(I).
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Example: Projective n-space PnF

I = (0) has zero set Z((0)) = PnF with Hilbert function

h(0)(k) = dim
(
Rk/(0)

)
= dim Rk =

(k+n
n

)
= 1

n!(k+1)(k+2) · · · (k+n).

The leading term kn

n! tells us that PnF has dimension n and
degree 1.

The Hilbert series is

Hilb(0)(t) =
∑
k>0

(
k + n

n

)
tk =

1
(1− t)n+1 .
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Example: Quadrics in PnF

A quadric Z(Q) is the zero set of a homogeneous quadratic
polynomial Q(x0, x1, . . . , xn) ∈ R2.

I = (Q) and Ik = QRk−2 for k > 2. (I0 = I1 = 0.)

The Hilbert function is

h(Q)(k) =

{
0, for k = 0,1;(k+n

n

)
−
(k+n−2

n

)
, for k > 2.

The leading term 2 kn−1

(n−1)! tells us that the quadric has dimension
n−1 and degree 2.

The value h(Q)(p−1) =
(p+n−1

n

)
−
(p+n−3

n

)
gives

rankp A(Q) = 1 + h(Q)(p−1) over the prime field F = Fp.

A generalization is known for F = Fpe .
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Other Algebraic Sets

We have also computed rankp AI for several other algebraic
sets Z(I), including hermitian varieties and Grassmann
varieties.

In particular, we get bounds for ovoids in other finite classical
polar spaces.

Disclaimer: In general, the ideal I ⊆ R needs to be replaced by
a slightly larger ideal:

I ⊆ Î =
√
I + J ⊆ R

where J =
(
xq

i xj − xix
q
j : i , j

)
.

Here Î is the set of all f ∈ R vanishing on Z(I).
In place of hI(p−1) we should really have h

Î
(p−1); but in many

settings, we show that these two values agree.

G. Eric Moorhouse p-Ranks



Other Algebraic Sets

We have also computed rankp AI for several other algebraic
sets Z(I), including hermitian varieties and Grassmann
varieties.

In particular, we get bounds for ovoids in other finite classical
polar spaces.

Disclaimer: In general, the ideal I ⊆ R needs to be replaced by
a slightly larger ideal:

I ⊆ Î =
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Î
(p−1); but in many

settings, we show that these two values agree.

G. Eric Moorhouse p-Ranks



Other Algebraic Sets

We have also computed rankp AI for several other algebraic
sets Z(I), including hermitian varieties and Grassmann
varieties.

In particular, we get bounds for ovoids in other finite classical
polar spaces.

Disclaimer: In general, the ideal I ⊆ R needs to be replaced by
a slightly larger ideal:

I ⊆ Î =
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Classical Generalized Quadrangles

A classical generalized quadrangle of order (q,q) has q+1
points on each line and q+1 lines through each point, q = pe.
Let A be its incidence matrix.

Theorem (Sastry and Sin, 1996; de Caen and M., 2000;
Chandler, Sin and Xiang, 2006)

For q = 2e, rankp A = 1 +
(1+

√
17

2

)2e
+
(1−

√
17

2

)2e.

For q = p, rankp A = 1 + p(p+1)2

2 .

For q = pe, p odd, rankp A = 1 + αe
+ + αe

− where

α± = p(p+1)2

4 ± p(p2−1)
12

√
17.
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Other Generalized Quadrangles of order (q,q)?

The only known generalized quadrangles of order (q,q) are the
classical ones from Sp(4,q) and O(5,q).

Let p be prime. Any generalized quadrangle of order (n,n) has
rankp A > n2 + 1 (de Caen, Godsil and Royle, 1992).

The classical GQ of order (5,5) has p-rank equal to 91. The
lower bound is 26.

Q: Improve the lower bound for p-ranks of GQ’s of order
(q,q).
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