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p-Ranks of Finite Projective Planes

Let I be a projective plane of order n with incidence matrix A.
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p-Ranks of Finite Projective Planes

Let I be a projective plane of order n with incidence matrix A.
Let p be a prime dividing n. (Only primes dividing n are of
interest.)

The p-rank of 1 is the rank of A over a field of characteristic p.
This is an isomorphism invariant of I1 (in fact, the easiest such
invariant to compute).
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p-Ranks of Finite Projective Planes

Let I be a projective plane of order n with incidence matrix A.

Let p be a prime dividing n. (Only primes dividing n are of
interest.)

The p-rank of 1 is the rank of A over a field of characteristic p.
This is an isomorphism invariant of I1 (in fact, the easiest such
invariant to compute).

Since AAT = nl + J, we have the trivial upper bound
rank, A < 3 (n?+n+2) whenever p| n. Equality holds if p = n.
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p-Ranks of Finite Projective Planes

Let I be a projective plane of order n with incidence matrix A.

Let p be a prime dividing n. (Only primes dividing n are of
interest.)

The p-rank of 1 is the rank of A over a field of characteristic p.
This is an isomorphism invariant of I1 (in fact, the easiest such
invariant to compute).

Since AAT = nl + J, we have the trivial upper bound
rank, A < 3 (n?+n+2) whenever p| n. Equality holds if p = n.

The best known lower bound is rank, A > n®/?+1 (Bruen and
Ott, 1990; de Caen, Godsil and Royle, 1992).
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5-Ranks of Projective Planes of order 25

There are 99 known projective planes of order 25. Their
5-ranks are

226", 239", 251", 253! 255! 256" 257" 2583 259°,
2602, 2612, 262°, 2642, 266', 268%, 269', 271", 2722,
273", 2743, 275% 276°, 2775, 278'2, 27927 2808, 286", 300’

where rk indicates k planes of rank r.
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5-ranks are
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2602, 2612, 262°, 2642, 266', 268%, 269', 271", 2722,
273", 2743, 275% 276°, 2775, 278'2, 27927 2808, 286", 300’

where rk indicates k planes of rank r.

The plane with smallest 5-rank is the classical plane P?Fys. The
largest 5-rank occurs for a derived Hughes plane.
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5-Ranks of Projective Planes of order 25

There are 99 known projective planes of order 25. Their
5-ranks are

226", 239", 251", 253! 255! 256" 257" 2583 259°,
2602, 2612, 262°, 2642, 266', 268%, 269', 271", 2722,
273", 2743, 275% 276°, 2775, 278'2, 27927 2808, 286", 300’

where rk indicates k planes of rank r.

The plane with smallest 5-rank is the classical plane P?Fys. The
largest 5-rank occurs for a derived Hughes plane.

Computation of p-rank is difficult for large matrices not because
of execution time, but due to limits on available RAM. g,
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Open Questions

Q: Does IPQIE‘q have the smallest p-rank among all projective
planes of order g = p®? (The Hamada-Sachar Conjecture).
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Q: Does IPQIE‘q have the smallest p-rank among all projective
planes of order g = p®? (The Hamada-Sachar Conjecture).

Q: Improve the upper and lower bounds for rank, A in
general.
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Open Questions

Q: Does IPQIE‘q have the smallest p-rank among all projective
planes of order ¢ = p¢? (The Hamada-Sachar Conjecture).

Q: Improve the upper and lower bounds for rank, A in
general. For n = 25 we know 126 < rank, A < 326, but all
known planes have p-rank in the interval [226, 300].

o

G. Eric Moorhouse JRREUL



Open Questions

Q: Does IPQIE‘q have the smallest p-rank among all projective
planes of order ¢ = p¢? (The Hamada-Sachar Conjecture).

Q: Improve the upper and lower bounds for rank, A in
general. For n = 25 we know 126 < rank, A < 326, but all
known planes have p-rank in the interval [226, 300].

Q: Improve the known upper bound for p-ranks of translation

planes (Key and MacKenzie, 1991). For g = 25 this upper
bound is 296; the translation planes have rank < 264.
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p-Ranks and Related/Current Work

The study of p-ranks of incidence matrices extends naturally to
questions about Smith Normal Forms and decomposition of the
associated [,-codes as [, G-modules.

Edward Assmus Richard Wilson Andries Brouwer Peter Sin Qing Xiang
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Edward Assmus Richard Wilson Andries Brouwer Peter Sin Qing Xiang

The study of p-ranks uses tools from algebraic geometry,
number theory and modular representation theory.

N

G. Eric Moorhouse JRREULS



p-Ranks and Related/Current Work

The study of p-ranks of incidence matrices extends naturally to
questions about Smith Normal Forms and decomposition of the
associated [,-codes as [, G-modules.

Edward Assmus Richard Wilson Andries Brouwer Peter Sin Qing Xiang
The study of p-ranks uses tools from algebraic geometry,
number theory and modular representation theory. It has

applications in finite geometry; but the biggest question ﬁ
remains the search for more such applications.
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Points versus Hyperplanes in Projective Space

Let A be the incidence matrix of points versus hyperplanes in
P"Fq, q=p°®. Then
rank, A = (P71 41,
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Points versus Hyperplanes in Projective Space

Let A be the incidence matrix of points versus hyperplanes in
P"Fq, q=p°®. Then
rank, A = (P71 41,

Theorem (Blokhuis and M., 1995)

If pln/2) > (P+1=1) " then quadrics in P"Fy contain no ovoids.

G. Eric Moorhouse JRREUL



Points versus Hyperplanes in Projective Space

Let A be the incidence matrix of points versus hyperplanes in
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rank, A = (P71 41,

Theorem (Blokhuis and M., 1995)

If pln/2) > (P+1=1) " then quadrics in P"Fy contain no ovoids.

In particular, there are no ovoids in quadrics in P°Fse, P9Fse,
p e, p! e, etc.
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Points versus Hyperplanes in Projective Space

Let A be the incidence matrix of points versus hyperplanes in
P"Fq, q=p°®. Then
rank, A = (P71 41,

Theorem (Blokhuis and M., 1995)

If pln/2) > (P+1=1) " then quadrics in P"Fy contain no ovoids.

In particular, there are no ovoids in quadrics in P°Fse, P9Fse,
p e, p! e, etc.

Proof. If O = {P4, P, ..., Pn} is an ovoid, then the points of O
and the hyperplanes P, ..., P4 index the rows and columns of
an identity submatrix /, in A. Comparing p-ranks,

m = pln/2leiq < (p+271)e+1.
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An Improvement

A quadric partitions the point-hyperplane incidence matrix of
P"F, as
A | A

where rows (and columns) of A¢; are indexed by points of the
quadric (and tangent hyperplanes).
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An Improvement

A quadric partitions the point-hyperplane incidence matrix of
P"F, as
A | A

where rows (and columns) of A¢; are indexed by points of the
quadric (and tangent hyperplanes).

Sharper bounds for ovoids follow from
O] =m < rankp A1y < rankp[Aq1]|As2] < rankp A
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An Improvement

A quadric partitions the point-hyperplane incidence matrix of
P"F, as
A | A

where rows (and columns) of A¢; are indexed by points of the
quadric (and tangent hyperplanes).

Sharper bounds for ovoids follow from
O] =m < rankp A1y < rankp[Aq1]|As2] < rankp A

The improved bounds are sometimes tight! g
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An Improvement

A quadric partitions the point-hyperplane incidence matrix of
P"F, as
A | A

A—
Al | Az

where rows (and columns) of A¢; are indexed by points of the
quadric (and tangent hyperplanes).

Theorem (Blokhuis and M. (1995))
rankp [Av1|Asa] = [(P77) = (P08 )7 + 1.

n
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An Improvement

A quadric partitions the point-hyperplane incidence matrix of
P"F, as
A | A

A—
Al | Az

where rows (and columns) of A¢; are indexed by points of the
quadric (and tangent hyperplanes).

Theorem (Blokhuis and M. (1995))

ranky (Al = () - (P2 +1.

So there are no ovoids in quadrics if p"/2l > (PT0=T) — (P+0=3),
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Instances when the p-Rank Bound is Tight
Ovoids in Triality Quadrics of P'F,, g = 2°

Ovoids have size |O| = g% + 1 = ranky Aq1.
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Instances when the p-Rank Bound is Tight

Ovoids in Triality Quadrics of P'F,, g = 2°

Ovoids have size |O| = g% + 1 = ranky Aq1.

Only known examples: Two infinite families (admitting PSL3(q),
all e; and PSUs(q), e odd; and one sporadic example, g=8).
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Ovoids in Triality Quadrics of P'F,, g = 2°

Ovoids have size |O| = g% + 1 = ranky Aq1.

Only known examples: Two infinite families (admitting PSL3(q),
all e; and PSUs(q), e odd; and one sporadic example, g=8).

Ovoids in Parabolic Quadrics of P°F,, g = 3°
Ovoids have size |O| = g° + 1 = rankg A¢1.
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Instances when the p-Rank Bound is Tight

Ovoids in Triality Quadrics of P'F,, g = 2°

Ovoids have size |O| = g% + 1 = ranky Aq1.

Only known examples: Two infinite families (admitting PSL3(q),
all e; and PSUs(q), e odd; and one sporadic example, g=8).

Ovoids in Parabolic Quadrics of P°F,, g = 3°

Ovoids have size |O| = g® + 1 = rankgz Aq1.

Only known examples: Two infinite families (admitting PSU3(q),
all e; and °G»(q), e odd).

v

Ovoids of P3F,, g = 2°. (g2+1 points, no three points collinear)
Here |O] = ¢? + 1 = rank; A.
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Instances when the p-Rank Bound is Tight

Ovoids in Triality Quadrics of P'F,, g = 2°

Ovoids have size |O| = g% + 1 = ranky Aq1.

Only known examples: Two infinite families (admitting PSL3(q),
all e; and PSUs(q), e odd; and one sporadic example, g=8).

Ovoids in Parabolic Quadrics of P°F,, g = 3°

Ovoids have size |O| = g® + 1 = rankgz Aq1.

Only known examples: Two infinite families (admitting PSU3(q),
all e; and °G»(q), e odd).

v

Ovoids of P3F,, g = 2°. (g2+1 points, no three points collinear)
Here |O] = ¢? + 1 = rank; A.

Only known examples: Two infinite families (admitting d
PSL>(g?), all e; and ?B>(q), e odd).

v
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Points versus k-subspaces of P"[F,

Let A be the incidence matrix of points versus k-subspaces of
P"Fy, q = p°.
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Points versus k-subspaces of P"[F,

Let A be the incidence matrix of points versus k-subspaces of
P"Fq, g = p°®. Let M be the k x k matrix whose (/, j)-entry
equals the coefficient of t*"~/in (1 +t+t2+---+tP~1)™1 Then

rankp, A = 1 + (coefficient of t in tr[(/ — tM)~]).

o

G. Eric Moorhouse JRREUL



Points versus k-subspaces of P"[F,

Let A be the incidence matrix of points versus k-subspaces of
P"Fq, g = p°®. Let M be the k x k matrix whose (/, j)-entry
equals the coefficient of t*"~/in (1 +t+t2+---+tP~1)™1 Then

rankp, A = 1 + (coefficient of t in tr[(/ — tM)~]).

Example: Points versus Lines of P3Fse
(1414 - - - +14)° = 14414+10£24-20134-35¢4+ - - - +-8518+801°+ - - -
so M= 35 %] and

17 2(1-60t)
tr((l—tM)'] = 1120111375

=24120141165012+123300013+131941250t* 4141375750005+ -
so ranks A =121, 11651, etc. forg = 5,25, .. ..
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Points versus k-subspaces of P"[F,

Let A be the incidence matrix of points versus k-subspaces of
P"Fq, g = p°®. Let M be the k x k matrix whose (/, j)-entry
equals the coefficient of t*"~/in (1 +t+t2+---+tP~1)™1 Then

rankp, A = 1 + (coefficient of t in tr[(/ — tM)~]).

Example: Points versus Lines of P3Fse

(1414 - - - +14)° = 14414+10£24-20134-35¢4+ - - - +-8518+801°+ - - -

so M — (% 2] and

17 2(1-60t)
tr((l—tM)'] = 1120111375

=24120141165012+123300013+131941250t* 4141375750005+ -
so ranks A =121, 11651, etc. forg = 5,25, .. ..

v

Hamada'’s Formula (1968) also expresses rank, A as a multiple }3
sum, requiring exponential time to evaluate.
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p-Ranks of Algebraic Sets of Points vs. Hyperplanes

Choose homogeneous coordinates Xy, X1, . . ., X, for P"F,
F =Ty, q=p°.
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p-Ranks of Algebraic Sets of Points vs. Hyperplanes

Choose homogeneous coordinates Xy, X1, . . ., X, for P"F,
F =TFg4, q = p®. The polynomial ring R = F[xo, X1, ..., Xp] IS
graded by degree:

R =P R«

k>0
where Ry consists of k-homogeneous polynomials in
X0, X1,...,Xn-
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p-Ranks of Algebraic Sets of Points vs. Hyperplanes

Choose homogeneous coordinates Xy, X1, . . ., X, for P"F,
F =TFg4, q = p®. The polynomial ring R = F[xo, X1, ..., Xp] IS
graded by degree:

R =P R«

k=0
where Ry consists of k-homogeneous polynomials in
Xo, X1, --.,Xp. Let 3 C R be a homogeneous ideal, i.e. J is

generated by a set of homogeneous polynomials.
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p-Ranks of Algebraic Sets of Points vs. Hyperplanes

Choose homogeneous coordinates Xy, X1, . . ., X, for P"F,
F =TFg4, q = p®. The polynomial ring R = F[xo, X1, ..., Xp] IS
graded by degree:

R =P R«

k>0
where Ry consists of k-homogeneous polynomials in
Xo, X1, --.,Xp. Let 3 C R be a homogeneous ideal, i.e. J is

generated by a set of homogeneous polynomials. The points of
P"F where all f € J vanish is an algebraic point set Z(7J).
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p-Ranks of Algebraic Sets of Points vs. Hyperplanes

Choose homogeneous coordinates Xy, X1, . . ., X, for P"F,
F =TFg4, q = p®. The polynomial ring R = F[xo, X1, ..., Xp] IS
graded by degree:

R =P R«

k>0
where Ry consists of k-homogeneous polynomials in
Xo, X1, --.,Xp. Let 3 C R be a homogeneous ideal, i.e. J is

generated by a set of homogeneous polynomials. The points of
P"F where all f € J vanish is an algebraic point set Z(J). We
want to know rank, A; where

A=A }Z2(7)

A= A

here rows and columns of A; are indexed by points of Z(J), 53
and all hyperplanes of P"F.
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Hilbert Functions

The homogeneous ideal 3 = P,-(Tx Where Jx = TN Ay
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Hilbert Functions

The homogeneous ideal J = @,@03,( where J, = TN Ry also
has a grading quotient ring

R/3 = D (Rk/3x).

k>0
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Hilbert Functions

The homogeneous ideal J = @,@03,( where J, = TN Ry also
has a grading quotient ring

R/3 = D (Rk/3x).

k>0

The Hilbert function of J is hy(k) = dim(Rx/Jx).
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Hilbert Functions

The homogeneous ideal J = @,@03,( where J, = TN Ry also
has a grading quotient ring

R/3 = D (Rk/3x).

k>0

The Hilbert function of J is hy(k) = dim(Rx/Jx). The generating
function for its sequence of values is the Hilbert series

Hilbs(t) = hy(k)t

k>0

which is actually a rational function Hilb;(t) € Q(t).
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Hilbert Functions

The homogeneous ideal J = @,@03,( where J, = TN Ry also
has a grading quotient ring

R/3 = D (Rk/3x).

k>0

The Hilbert function of J is hy(k) = dim(Rx/Jx). The generating
function for its sequence of values is the Hilbert series

Hilbs(t) = hy(k)t

k>0

which is actually a rational function Hilb;(t) € Q(t). That is, for
k > 0, hy(k) coincides with a polynomial.
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Hilbert Functions

The homogeneous ideal J = @,@03,( where J, = TN Ry also
has a grading quotient ring

R/3 = D (Rk/3x).

k>0

The Hilbert function of J is hy(k) = dim(Rx/Jx). The generating
function for its sequence of values is the Hilbert series

Hilbs(t) = hy(k)t

k>0

which is actually a rational function Hilb;(t) € Q(t). That is, for
k > 0, hy(k) coincides with a polynomial. This is the Hilbert

polynomial of J, whose leading term m’% defines the degree m g
and dimension d of Z(J).
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Example: Projective n-space P"F

J = (0) has zero set Z((0)) = P"F with Hilbert function

hoy(k) = dim(Ry/(0)) = dim R = (“}")
= L(k+1)(k+2)--- (k+n).
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Example: Projective n-space P"F

J = (0) has zero set Z((0)) = P"F with Hilbert function
hoy(k) = dim(Ry/(0)) = dim R = (“}")
= 1 (k+1)(k+2) - - (k+n).

kn

- tells us that P"F has dimension n and

The leading term
degree 1.
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Example: Projective n-space P"F

J = (0) has zero set Z((0)) = P"F with Hilbert function
hoy(k) = dim(Ry/(0)) = dim R = (“}")
= 1 (k+1)(k+2) - - (k+n).

kn

- tells us that P"F has dimension n and

The leading term
degree 1.

The Hilbert series is

Hilboy(f) = 3 (’“g”) = (1_10”“

k>0
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Example: Quadrics in P"F

A quadric Z(Q) is the zero set of a homogeneous quadratic
polynomial Q(xg, X1,...,Xn) € Ro.
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Example: Quadrics in P"F

A quadric Z(Q) is the zero set of a homogeneous quadratic
polynomial Q(xg, X1,...,Xn) € Ro.

J=(Q)and Jx = QRy_s fork > 2. (Jo=J1 =0.)
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Example: Quadrics in P"F

A quadric Z(Q) is the zero set of a homogeneous quadratic
polynomial Q(xg, X1,...,Xn) € Ro.

J=(Q)and Jx = QR 2 fork > 2. (Jp =77 =0.)
The Hilbert function is

ey (k) = { 0;( ) fork =0,1;
(55— (41), fork >2.
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Example: Quadrics in P"F

A quadric Z(Q) is the zero set of a homogeneous quadratic
polynomial Q(xg, X1,...,Xn) € Ro.

J=(Q)and Jx = QR 2 fork > 2. (Jp =77 =0.)
The Hilbert function is

ey (k) = { 0;( ) fork =0,1;
(55— (41), fork >2.

The leading term 2( ) tells us that the quadric has dimension
n—1 and degree 2.
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Example: Quadrics in P"F

A quadric Z(Q) is the zero set of a homogeneous quadratic
polynomial Q(xg, X1,...,Xn) € Ro.

J=(Q)and Jx = QR 2 fork > 2. (Jp =77 =0.)
The Hilbert function is

ey (k) = { 0;( ) fork =0,1;
(55— (41), fork >2.

The leading term 2( ) tells us that the quadric has dimension
n—1 and degree 2.

The value hgy(p—1) = (P*771)—(P*7~°) gives
rankp Ag) = 1+ h(q)(p—1) over the prime field F = F,.

o

G. Eric Moorhouse JRREULS



Example: Quadrics in P"F

A quadric Z(Q) is the zero set of a homogeneous quadratic
polynomial Q(xg, X1,...,Xn) € Ro.

J=(Q)and Jx = QR 2 fork > 2. (Jp =77 =0.)
The Hilbert function is

ey (k) = { 0;( ) fork =0,1;
(55— (41), fork >2.

The leading term 2( ) tells us that the quadric has dimension
n—1 and degree 2.

The value hgy(p—1) = (P*771)—(P*7~°) gives
rankp Ag) = 1+ h(q)(p—1) over the prime field F = F,.

A generalization is known for F = Fpe. g
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Other Algebraic Sets

We have also computed rank, A; for several other algebraic
sets Z(3J), including hermitian varieties and Grassmann
varieties.
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Other Algebraic Sets

We have also computed rank, A; for several other algebraic
sets Z(3J), including hermitian varieties and Grassmann
varieties.

In particular, we get bounds for ovoids in other finite classical
polar spaces.
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Other Algebraic Sets

We have also computed rank, A; for several other algebraic
sets Z(3J), including hermitian varieties and Grassmann
varieties.

In particular, we get bounds for ovoids in other finite classical
polar spaces.

Disclaimer: In general, the ideal 7 C R needs to be replaced by
a slightly larger ideal:

JCI3=vVi+JCR

where J = (x7x — xix{ : i, J).
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Other Algebraic Sets

We have also computed rank, A; for several other algebraic
sets Z(3J), including hermitian varieties and Grassmann
varieties.

In particular, we get bounds for ovoids in other finite classical
polar spaces.

Disclaimer: In general, the ideal 7 C R needs to be replaced by
a slightly larger ideal:

3C3=Vi+JCR
where J = (x7x — xix{ : i, J).

Here J is the set of all f € R vanishing on Z(3).
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Other Algebraic Sets

We have also computed rank, A; for several other algebraic
sets Z(3J), including hermitian varieties and Grassmann
varieties.

In particular, we get bounds for ovoids in other finite classical
polar spaces.

Disclaimer: In general, the ideal 7 C R needs to be replaced by
a slightly larger ideal:

3C3=Vi+JCR
where J = (x7x — xix{ : i, J).

Here J is the set of all f € R vanishing on Z(3).

In place of hy(p—1) we should really have h;(p—1); but in many d’
settings, we show that these two values agree.
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Classical Generalized Quadrangles

A classical generalized quadrangle of order (q, q) has g+1
points on each line and g+1 lines through each point, g = p®.
Let A be its incidence matrix.
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Classical Generalized Quadrangles

A classical generalized quadrangle of order (q, q) has g+1
points on each line and g+1 lines through each point, g = p®.
Let A be its incidence matrix.

Theorem (Sastry and Sin, 1996; de Caen and M., 2000;

Chandler, Sin and Xiang, 2006)
For q = 2°, rank, A =1+ (AR{7)%¢ 4 (1=/17)%¢,

For q=p, rank, A =1+ REI°

For q=p®, podd, rank,A=1+af +af where
oy = P(PIUZ + P(Pfg”, /17.
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Other Generalized Quadrangles of order (g, q)?

The only known generalized quadrangles of order (q, q) are the
classical ones from Sp(4, q) and O(5, q).
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Other Generalized Quadrangles of order (g, q)?

The only known generalized quadrangles of order (q, q) are the
classical ones from Sp(4, q) and O(5, q).

Let p be prime. Any generalized quadrangle of order (n, n) has
ranko A > n? + 1 (de Caen, Godsil and Royle, 1992).
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Other Generalized Quadrangles of order (g, q)?

The only known generalized quadrangles of order (q, q) are the
classical ones from Sp(4, q) and O(5, q).
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