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Ovoids and Spreads

Consider a bipartite graph representing incidences between
points and blocks.

A spread is a set of blocks partitioning the points.
Dually, an ovoid is a set of points partitioning the blocks.
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Hyperbolic Quadrics in P3Fq

A hyperbolic quadric (ruled quadric) in projective 3-space is
combinatorially just a (q+1)× (q+1) grid. It has (q+1)2 points
and 2(q+1) lines.

Here is one spread and here is the other spread.

There are (q+1)! ovoids (transversals of the grid).

This includes q(q2 − 1) regular ovoids, which are nonsingular
plane sections of the quadric.
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Some ovoids in the Klein quadric in P5Fp

Consider a prime p ≡ 1 mod 4. Let S be the set of all
x = (x1, . . . , x6) ∈ Z6 such that

1 xi ≡ 1 mod 4; and
2

∑
i x2

i = 6p.

Then |S| = p2 + 1; and for all x 6= y in S, x · y 6≡ 0 mod p.

Example (p = 5, |S| = 52 + 1 = 26)

S contains 6 vectors of shape (5,1,1,1,1,1);
20 vectors of shape (−3,−3,−3,1,1,1).

Example (p = 13, |S| = 132 + 1 = 170)

S contains 20 vectors of shape (5,5,5,1,1,1);
30 vectors of shape (−7,−5,1,1,1,1);
60 vectors of shape (5,5,−3,−3,−3,1);
60 vectors of shape (−7,−3,−3,−3,1,1).
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Some ovoids in the Klein quadric in P5Fp

Consider a prime p ≡ 1 mod 4. Let S be the set of all
x = (x1, . . . , x6) ∈ Z6 such that

1 xi ≡ 1 mod 4; and
2

∑
i x2

i = 6p.

Then |S| = p2 + 1; and for all x 6= y in S, x · y 6≡ 0 mod p.

Points of P5Fp satisfying
∑

i x2
i = 0 form the Klein quadric with

(p2+1)(p2+p+1) points and 2(p2+1)(p+1) planes. Each point
is in 2(p+1) planes, so an ovoid is any set of p2+1 points, no
two on the same plane (no two perpendicular).

This is the same as a spread of lines in P3Fp, i.e. a partition of
the (p2+1)(p+1) points into p2+1 lines (of size p+1).

And this is the same as a translation plane of order p2.
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S6-invariant ovoids in the Klein quadric

Now let F = Fq, q ≡ 1 mod 4. The vectors in F 6 satisfying∑
i x2

i = 0 form (projectively) a Klein quadric.

When can we find an ovoid in the quadric invariant under S6
acting by coordinate permutations? (We need q2+1 vectors
satisfying x · y = 0 iff x = y . And we want the set to be invariant
under coordinate permutations.)

Q: Must q be prime?

Usually when a combinatorial problem has a solution over Fp,
the solution generalises to Fq, q = pe. The situation above
seems to be an example to the contrary.
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The E8 Root Lattice

Let E be the set of all vectors 1
2(x1, x2, . . . , x8) ∈ Q8 such that

xi ∈ Z, x1≡x2≡ · · ·≡x8 mod 2, and
∑

i
xi ≡ 0 mod 4.

This is the E8 root lattice. It is
a lattice (i.e. additive subgroup of R8);
integral (x · y ∈ Z for all x , y ∈ E);
unimodular (its density is 1, i.e. it has one point per unit
volume on average);
it has minimum distance

√
2 (so for any x 6= y in E ,

||y − x || >
√

2); and
it is unique with these properties. Any subset of R8 of
density 1 has minimum distance at most

√
2; and up to

isometry, E is the unique subset attaining this optimum.
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The E8 Root Lattice

Let E be the set of all vectors 1
2(x1, x2, . . . , x8) ∈ Q8 such that

xi ∈ Z, x1≡x2≡ · · ·≡x8 mod 2, and
∑

i
xi ≡ 0 mod 4.

E has 240 shortest vectors (e ∈ E , ||e||2 = e · e = 2) called root
vectors:

(±1,±1,0,0,0,0,0,0) and permutations thereof (112
vectors of this shape); and
1
2(±1,±1, . . . ,±1) with an even number of ‘−’ signs (128
vectors of this shape).

For an odd prime p, there are 240(p3+1) vectors x ∈ E with
||x ||2 = 2p.
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The Triality Quadric in P7Fq

Let F = Fq where q is an odd prime. The triality quadric in P7F
with equation

∑
i x2

i = 0 contains
(q3+1)(q2+1)(q+1) points;
2(q3+1)(q2+1)(q+1) solids, i.e. projective 3-spaces, the
maximum dimension of any subspaces lying in the quadric;
and
2(q2+1)(q+1) solids containing each point.

So an ovoid (set of points hitting each solid exactly once) must
have size q3+1.

But do ovoids exist in the triality quadric?
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Conway’s Ovoids

Theorem (Conway et. al., 1988)
For every prime p, there is an ovoid in the triality quadric in
P7Fp.

John H. Conway

Take p to be an odd prime (the case p = 2
was previously solved). Fix a root vector
e ∈ E . Let S be the set of all v ∈ E such
that ||v ||2 = 2p and v = e + 2x for some
x ∈ E . We easily conclude that
|S| = 2(p3+1) and S consists of p3+1
pairs ±v which reduce (mod p) to give an
ovoid in the triality quadric.
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More: Ovoids in the Triality Quadric

Using E , Conway et. al. gave more examples of ovoids in the
triality quadric (up to 3 examples for each prime p).

Also using E , we (1993) generalized this to an unbounded
number of examples for each p. Other constructions of ovoids
in the triality quadric are known, but almost all of them come
from the E8 root lattice.

It is really this construction of ovoids from E8, which explains
the earlier examples of ovoids in the Klein quadric (and many
similar examples).

The geometry of the triality quadric admits a triality
automorphism, mapping ovoids to spreads.
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Open Questions
Q: Do ovoids exist in the triality quadric in P7Fq for every q?
The smallest open case is q = 25.

Q: Is it true that the number of ovoids in the triality quadric is
unbounded as p →∞?

Q: If an ovoid in the triality quadric admits certain groups
(such as Sp6(Fq)), must it come from the E8 construction, with
q = p?

Q: Construct an ovoid in the triality quadric admitting no
automorphisms (a ‘rigid’ ovoid).

Q: Prove that for the triality quadric in P7Fp arising from E8,
the total number of ovoids arising from E8 is |G(p)|

4|G(2)|(p
4 + 239)

where G = PGO+
8 (p).

Q: Are there any ovoids in quadrics in PkFq, k > 7?

Q: The Leech lattice mod p does not give ovoids but . . . what
does it give?
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Fans

A fan of a quadric (or any finite classical polar space) is a
partition of its points into ovoids. E.g. (q2+1)(q+1) ovoids of
size q3+1 in the triality quadric.

Very little has been written on the subject, only a few examples
and a few nonexistence results, over the past 30 years. This
should change, now that Cameron has showed us why the
existence question for fans (also ovoids and spreads) is forced
upon us in permutation group theory:

Theorem
A classical group is non-synchronizing if and only if its polar
space possesses either

an ovoid and a spread, or
a fan.

Q: When do fans exist?
G. Eric Moorhouse Ovoids and Spreads
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