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“The infinite case we shall do right away.
The finite may take a little longer.”

—Stanisław Ulam
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(Partial) Spreads

Let (P,L, I) be a partial linear space.

A partial spread is a collection of mutually disjoint lines Σ ⊆ L,
i.e. no two lines in Σ intersect. A spread is a partial spread
covering the points, i.e.

⋃
Σ = P. Equivalently, a spread is a

partition of the points into lines.
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Line Spreads in P3F

Projective 3-space over a field F is denoted P3F . It has points,
lines and planes given by the subspaces of F 4 of dimension 1,
2 and 3.

In the finite case, P3Fq has (q2+1)(q+1) points, and each line
has q+1 points. So every partial spread has at most q2+1
lines. A spread is the same thing as a set of q2+1 mutually
disjoint lines. Every such spread gives a plane of order q2,
known as a translation plane. Take F 4 as points, and the cosets
of the q2+1 subspaces ` ∈ Σ as lines, to get an affine plane of
order q2; and this gives the affine translation plane arising
from Σ.

The biggest obstacle to constructing spreads (and hence
translation planes) is the fact that not every partial spread can
be extended to a spread. But the infinite case is much easier:
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Line Spreads in P3F

Let F be an infinite field. Then every partial spread of P3F
having fewer than |F | lines, can be extended to a spread, by a
process of transfinite induction.

(In order to get a translation plane, we need the spread to also
be a dual spread: every plane of P3F should contain a line of
the spread. But this is easily arranged. In the finite case every
spread is also a dual spread, by the pigeonhole principle, so
this issue doesn’t even arise.)

So we get a huge variety of translation planes in the infinite
case, practically for free.
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Extending Partial Flocks to Flocks

I used a similar idea to extend a partial flock
to a flock of a quadratic cone, answering a
question posed by Norman Johnson at the
1996 conference Mostly Finite Geometries.

A flock of a quadratic cone is a partition of its
q(q+1) points (minus the vertex) into q
conics of size q+1.

G. Eric Moorhouse Geometry Beyond the Finite



Collineations of Projective Planes

A collineation of a projective plane Π is a bijection of its points,
which also gives a bijection on the lines. An automorphism of
the bipartite incidence graph is either a collineation (mapping
points→ points, and lines→ lines) or a correlation
(interchanging points↔ lines).

The group of all collineations of Π is denoted Aut Π.
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Orbits of Collineation Groups

Let Π be a projective plane.

In the finite case, Aut Π has equally many orbits on points and
on lines. (The same conclusion holds for automorphisms of
symmetric designs, character tables of finite groups, etc.)

Does the same conclusion hold for infinite projective planes Π?
Cameron (1991) posed this question, which he attributed to
Kantor. We found a negative answer to this question:

Theorem (M. and Penttila, 2014)
Let A and B be any two nonzero cardinal numbers. Then there
is a projective plane whose collineation group has A orbits on
points and B orbits on lines.
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Generalized Quadrangles

A GQ (generalized quadrangle) of order (s, t)
has

s+1 points on every line; t+1 lines through
every point;
if point P is not on line `, then there is a unique line
through P meeting `.

We generally require s, t > 1.

Finite case (s, t <∞): There are (s+1)(st+1) points and
(t+1)(st+1) lines. Also

√
t 6s6 t2, i.e.

√
s6 t 6s2.

Q: Can one of s, t be finite and the other infinite?
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Semifinite Generalized Quadrangles

Suppose a GQ has finite linesize s+1 <∞. Must the GQ be
finite (i.e. is t <∞)?

A GQ with three points per line is finite. (Elementary proof, one
short paragraph; Cameron)

A GQ with four points per line is finite. (Four-page paper;
Brouwer 1991)

A GQ with five points per line is finite. (Cherlin 2005 using
mathematical logic)

Line size six (and higher) is completely open!

Mathematical logic supplies methods for constructing examples
but also for proving nonexistence.
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Orbits of Aut Π on k -tuples of points of Π = P2F

Consider the classical projective plane Π = P2F over a field F .

Aut Π permutes points transitively (i.e. just one orbit on points).

There are two orbits on ordered pairs of points: (P,P), (P,Q),
P 6= Q.

There are six orbits on ordered triples of points: (P,P,P),
(P,P,Q), (P,Q,P), (Q,P,P), (P,Q,R) collinear, (P,Q,R)
noncollinear where P,Q,R are distinct.

If F is infinite, there are infinitely many orbits on 4-tuples of
points. (For four collinear points, the cross ratio has infinitely
many possible values.)
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ℵ0-categorical projective planes

Let Π be a (countably) infinite plane.

Suppose that for every k > 1, Aut Π has only finitely many
orbits on k -tuples of points. (One could say instead k -sets of
points, or k -sets of lines, etc. and this condition is unchanged.)

Then we say Π is ℵ0-categorical.

Open Problem
Does there exist an ℵ0-categorical plane?

As we have indicated, an ℵ0-categorical plane cannot be
classical .

If there exists an ℵ0-categorical plane, it would have a much
bigger group of automorphisms (more transitive and larger
cardinality) than any classical plane. This seems inconceivable.

G. Eric Moorhouse Geometry Beyond the Finite



ℵ0-categorical projective planes

Let Π be a (countably) infinite plane.

Suppose that for every k > 1, Aut Π has only finitely many
orbits on k -tuples of points. (One could say instead k -sets of
points, or k -sets of lines, etc. and this condition is unchanged.)

Then we say Π is ℵ0-categorical.

Open Problem
Does there exist an ℵ0-categorical plane?

As we have indicated, an ℵ0-categorical plane cannot be
classical .

If there exists an ℵ0-categorical plane, it would have a much
bigger group of automorphisms (more transitive and larger
cardinality) than any classical plane. This seems inconceivable.

G. Eric Moorhouse Geometry Beyond the Finite



ℵ0-categorical projective planes

Let Π be a (countably) infinite plane.

Suppose that for every k > 1, Aut Π has only finitely many
orbits on k -tuples of points. (One could say instead k -sets of
points, or k -sets of lines, etc. and this condition is unchanged.)

Then we say Π is ℵ0-categorical.

Open Problem
Does there exist an ℵ0-categorical plane?

As we have indicated, an ℵ0-categorical plane cannot be
classical .

If there exists an ℵ0-categorical plane, it would have a much
bigger group of automorphisms (more transitive and larger
cardinality) than any classical plane. This seems inconceivable.

G. Eric Moorhouse Geometry Beyond the Finite



ℵ0-categorical projective planes

Let Π be a (countably) infinite plane.

Suppose that for every k > 1, Aut Π has only finitely many
orbits on k -tuples of points. (One could say instead k -sets of
points, or k -sets of lines, etc. and this condition is unchanged.)

Then we say Π is ℵ0-categorical.

Open Problem
Does there exist an ℵ0-categorical plane?

As we have indicated, an ℵ0-categorical plane cannot be
classical .

If there exists an ℵ0-categorical plane, it would have a much
bigger group of automorphisms (more transitive and larger
cardinality) than any classical plane. This seems inconceivable.

G. Eric Moorhouse Geometry Beyond the Finite



ℵ0-categorical projective planes

Suppose Π is an ℵ0-categorical projective plane. We try to get
a contradiction.

Lemma
Any finite list of points P1,P2, . . . ,Pr which includes a
quadrangle, must generate a finite subplane.

Proof . Starting with P1 = {P1,P2, . . . ,Pr} and alternately
joining points and intersecting lines, we get a sequence of
substructures with point sets P1 ⊆ P2 ⊆ P3 ⊆ · · · whose union
gives a subplane P∞ =

⋃
i Pi ⊆ Π.

If this sequence is strictly increasing, choose points
Ti ∈ Pi+1 r Pi ; then the (r+1)-tuples (P1,P2, . . . ,Pr ,Ti) (i > 1)
are in distinct orbits, a contradiction. So we must have Pi = P∞
for all sufficiently large i .
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ℵ0-categorical projective planes

Now let (Pi ,Qi ,Ri ,Si) (i = 1,2, . . . ,m) be representatives of the
orbits of Aut Π on quadrangles. If ni is the order of the subplane
generated by Pi ,Qi ,Ri ,Si , then every quadrangle generates a
subplane of order at most

n = max{n1,n2, . . . ,nm}.

Let Π0 ⊂ Π be any finite subplane of order > n. (This is easily
found; for example any quadrangle, together with any n+2
collinear points, will together generate such a subplane.) Note
that every quadrangle in Π0 generates a proper subplane.

Without loss of generality, Π0 is non-classical. (As we have
observed, Π itself is non-classical. So there exists an induced
substructure in Π violating Desargues’ Theorem. Without loss
of generality, Π0 was chosen so as to contain this substructure.)
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ℵ0-categorical projective planes

So if there exists an ℵ0-categorical plane, then we obtain many
examples of finite nonclassical planes in which every
quadrangle generates a proper subplane.

Such a conclusion seems highly improbable, although we have
not yet reached a contradiction.
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Perspectivities and Projectivities

Fix lines ` 6= `′ in a projective plane Π.

Each point O /∈ ` ∪ `′ determines a bijection from the points of `
to the points of `′, called a perspectivity.

Compositions of perspectivities gives the projectivity groupoid
of Π. In particular for each line `, we get a group of
permutations of the points of ` called the projectivity group of Π.
This group doesn’t really depend on the choice of line `.
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Perspectivities and Projectivities

A classical plane Π = P2F has collineation group
Aut Π ∼= PΓL3(F ) and projectivity group PGL2(F ).

A finite nonclassical plane Π of order n has typically small
collineation group Aut Π, but very large projectivity group An+1
or Sn+1.

An ℵ0-categorical plane would have collineation group of order
2ℵ0 but projectivity group of order ℵ0.

G. Eric Moorhouse Geometry Beyond the Finite



Perspectivities and Projectivities

A classical plane Π = P2F has collineation group
Aut Π ∼= PΓL3(F ) and projectivity group PGL2(F ).

A finite nonclassical plane Π of order n has typically small
collineation group Aut Π, but very large projectivity group An+1
or Sn+1.

An ℵ0-categorical plane would have collineation group of order
2ℵ0 but projectivity group of order ℵ0.

G. Eric Moorhouse Geometry Beyond the Finite



Perspectivities and Projectivities

A classical plane Π = P2F has collineation group
Aut Π ∼= PΓL3(F ) and projectivity group PGL2(F ).

A finite nonclassical plane Π of order n has typically small
collineation group Aut Π, but very large projectivity group An+1
or Sn+1.

An ℵ0-categorical plane would have collineation group of order
2ℵ0 but projectivity group of order ℵ0.

G. Eric Moorhouse Geometry Beyond the Finite


