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Finite Projective Planes

In this talk, all planes considered are projective.

Every field F gives rise to a classical projective plane P2F
whose points and lines are the one- and two-dimensional
subspaces of F 3.

A projective plane of order n > 2 has n2+n+1 points and
n2+n+1 lines.
Each line has n+1 points, and each point is on n+1 lines.
Any two points lie on exactly one common line.
Any two distinct lines meet in exactly one point.

The finite classical plane P2Fq has prime power order q. And
there exist finite non-classical planes, but in all known cases,
the order is a prime power. And the only known planes of prime
order are the classical ones P2Fp.
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(Partial) Linear Spaces

A partial linear space (PLS) is an incidence system of points
and lines in which no two distinct points are joined by more
than one line, i.e. does not occur. (Some authors
require every line to have at least two points. Connectedness is
never required.)

The point-line dual of a partial linear space (in which we
reverse the roles of points and lines) is a partial linear space.
The incidence graph of a PLS is a bipartite graph of girth at
least 6 (i.e. no 4-cycles).

A linear space is a PLS in which any two points are joined by a
(necessarily unique) line.
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Linear Spaces and Projective Planes

If a linear space is also a dual linear space (i.e. any two lines
intersect), then either

It contains a quadrangle (four points, no three collinear). In
this case the space is a projective plane. Or
It does not contain a quadrangle. In this case it is a
generalized flag or a generalized antiflag.

flag

generalized flag

antiflag

generalized antiflag
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Subgraphs and Induced Subgraphs

Let Γ be a graph with vertex set V . An induced subgraph of Γ
has vertex set V ′ ⊆ V . Its edges are all edges of Γ joining
vertices in V ′.

A subgraph of Γ has vertex set V ′ ⊆ V , and edges given by a
subset of the edges in Γ joining vertices in V ′.
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Substructures and Embeddings
Let (P,L, I) be a partial linear space (with point set P, line set L
and incidence relation I ⊆ P × L).

Any subsets of the points and lines P ′ ⊆ P and L′ ⊆ L give rise to
an induced substructure (P ′,L′, I ∩ (P ′×L′)). Starting from the
incidence graph of (P,L, I), here one takes the induced subgraph
on the vertices P ′ ∪ L′.

If instead I′ ⊆ I ∩ (P ′×L′), then (P ′,L′, I′) is a substructure of
(P,L, I). Here one takes simply a subgraph of the incidence graph.

An embedding of one PLS (P,L, I) in another, (P̂, L̂, Î), is a pair of
injections ι : P → P̂, L → L̂ such that (P, `) ∈ I ⇒ (ι(P), ι(`)) ∈ Î.
The embedding is strict if (P, `) ∈ I ⇔ (ι(P), ι(`)) ∈ Î.

The image of
{an embedding

a strict embedding is
{a substructure.

an induced substructure.

Every embedding of a linear space is strict.
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injections ι : P → P̂, L → L̂ such that (P, `) ∈ I ⇒ (ι(P), ι(`)) ∈ Î.
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Examples of Embeddings

A2F3 = embeds in P2F iff char(F ) = 3 or F has a
primitive cube root of unity. (Note: Fq satisfies this condition iff
q 6≡ 2 mod 3.)

The Desargues configuration embeds in every finite
projective plane of order q > 2 (strongly, for q > 3).

Hanna Neumann

The projective plane of order two P2F2 =
embeds in most known finite planes.
Neumann’s Conjecture states that the only
finite projective planes without a subplane of
order two are the classical planes of odd order.

The projective plane of order three P3F3 embeds in many (yet a
small percentage) of known finite planes.
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Embedding Questions for a finite PLS

Every PLS embeds in a projective plane (by a process of free
closure).

Open Question [Erdős 1979 and probably earlier]
Must every finite PLS embed in a finite projective plane?

(It is equivalent to consider only linear spaces, and to ask for a
strict embedding.) Expert opinion/intuition is quite mixed
regarding the answer to this question.

We know that there exist finite PLS’s which do not embed in
Hughes planes or André planes (a particular class of translation
planes), but no finite PLS is known to not embed in any finite
translation plane, even if one restricts to ‘two-dimensional
translation planes’ (i.e. arising from line spreads of P3Fq).
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Embedding Questions for a finite PLS

If one relaxes ‘spread’ to ‘partial spread’, then we are in much
better shape (although the harder problem then becomes trying
to extend the partial spread to a spread):

Theorem (M. and Williford, 2009)
(i) Every finite PLS is embeddable in a finite translation net

generated by a partial spread of a finite vector space.
(ii) Let p be prime and let Fp be the algebraic closure of Fp.

Then every finite PLS is embeddable in a translation plane
of finite dimension over Fp.

Unfortunately in (ii), the embedding is not known to lie in a finite
subplane (despite the fact that every finite subset of Fp lies in a
finite subfield).
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Computational Complexity of Embedding Questions

Finite geometry currently suffers from a lack of any thorough
investigation of the complexity of basic computational tasks,
comparable to what is now available in graph theory and in
much of algebra (particularly group theory)!

Given two finite planes Π and Π̃ of order < n, one can answer
the question ‘Does Π embed in Π̃?’ in time bounded by a
polynomial in n.

But if Π is replaced by a more general finite PLS, this is
probably not true. . . even if Π̃ is a classical plane!
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Computational Complexity of Embedding Questions

Lower Bounds on Complexity of Embedding a PLS:
Given n, choose M to be a random n-bit integer, so
n = O(log M). We have shown how to construct a partial linear
space Π(M) of size O(n), such that in order to construct an
embedding Π(M) ↪→ P2Fq for some q, requires first factoring M.
The best known algorithms for this have subexponential
execution time O(exp(cn1/3 log2/3n)).

It may be possible to nonconstructively prove embeddability
without producing such an embedding, but we do not know
how. Our best algorithm for solving the embedding problem,
requires non-polynomial (in fact subexponential) time.
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Computational Complexity of Embedding Questions

Upper Bounds on Complexity of Embedding a PLS:
Let Π be a partial linear space of size O(n), and let p be prime.
Then Π embeds in P2Fpe for some e > 1, iff Π embeds in P2Fp
where Fp is the algebraic closure of Fp.

In general the best way I know how to decide existence of such
an embedding, is to solve a system of polynomial equations by
existing methods from computational commutative algebra.
Known methods, however, are practical only for small n; both
the space and time requirements are exponential (O(exp(n4))
for deterministic algorithms, O(exp(n2)) for nondeterministic
algorithms).

Perhaps worst of all, we see no evidence that the embedding
question is in NP (although for fixed p, it seems that deciding
embeddability in characteristic p is in co-NP).
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Known methods, however, are practical only for small n; both
the space and time requirements are exponential (O(exp(n4))
for deterministic algorithms, O(exp(n2)) for nondeterministic
algorithms).

Perhaps worst of all, we see no evidence that the embedding
question is in NP (although for fixed p, it seems that deciding
embeddability in characteristic p is in co-NP).
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Evidence that embeddability is hard

Let Π be a finite PLS.

I believe that the question of embeddability of Π in a finite
classical plane is hard to determine.

So I believe that the question of embeddability of Π in an
arbitrary finite classical plane, must be extremely hard.
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More Open Questions

Q: Must every finite plane of order n2 have a subplane of
order n? (And a unital of order n?)

Q: Must every finite plane Π have a proper extension (i.e.
does Π embed in a larger plane)?

In P2Fpe , every quadrangle generates a subplane of order p.
Gleason’s theorem shows that if any quadrangle in Π generates
a subplane of order 2, then Π ∼= P2F2e .

Q: Are there any primes other than 2 for which the
corresponding statement holds?

Q: If Π is a finite plane for which every quadrangle generates
a proper subplane, must Π be classical (of order pe, e > 2)?

Q: Can a plane of order n > 3 embed in a plane of order not
a power of n?
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Heuristically counting subplanes of order k

Number theory abounds in hard problems for which conjectural
answers can be deduced using certain heuristics. Finite
geometry needs more heuristics like this:

Let k be a small positive integer. Given a plane Π, let Nk (Π) be
the number of subplanes of order k . Heuristically, if Π has order
n >> 2, then

N2(Π) ≈ 1
168n3(n3 − 1)(n + 1) ∼ 1

168n7.

This heuristic applies best to the ‘uglier’ planes (those with very
few automorphisms). For example:
For planes of order 25, the heuristic says N2(Π) ≈ 37,781,250.
There are 193 planes of order 25 known; and ignoring the
classical and Hughes planes, the number of subplanes of order
2 varies from

35,110,000 to 43,569,000.

The results for planes of order 49 are much better.
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Heuristically counting subplanes of order k

Similar counts for larger fixed k leads to

Nk (Π) ≈ ckn(3−k)(k2+k+1)

as n→∞, where ck is a positive constant depending only on k .

For example, N3(Π) = O(1) and N4(Π) = O(n−21).

Among the hundreds of thousands of known planes of order 49,
about 1 in every 20,000 has subplanes of order 3; and no
subplanes of order 4 have been found.

As n→∞, the hope of finding subplanes of order 4 seems to
decrease, contrary to some expectations.
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Penttila’s scheme for finding planes of order n 6= pe

Tim Penttila has widely circulated the following scheme for
finding a plane of non-prime-power order: Start with a known
plane Π of large order n. Sample quadrangles at random and
look at what subplanes they generate.

My assertion is that you won’t find any subplanes of order other
than 2 this way. Tim doesn’t believe my heuristics.
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