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“Combinatorics is the slums of topology.”
—Henry Whitehead

Case in point: the SECC

We hope this view of combinatorics is changing thanks to the
influence of people like

{’
d

Terence Tao Timothy Gowers Laszl6 Babai ﬁ
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some notation

Finite field
of prime order p: Fp or Zp or GF(p)

Finite field of
prime power order q=p¢: Fq or GF(q)

Classical affine plane
defined over F: A2F or AG(2,F)

Classical projective plane
defined over F: P2F or FIP2 or PG(2,F)

G. Eric Moorhouse Planes, Nets and Webs



Planes, Nets and Webs

Lecture 1

G. Eric Moorhouse

Department of Mathematics
University of Wyoming

Zhejiang University—March 2019

N

G. Eric Moorhouse Planes, Nets and Webs



5

1-net of order 3

Planes, Nets and Webs



Nets

5

1-net of order 3 2-net of order 3

Planes, Nets and Webs



Nets

5

1-net of order 3 2-net of order 3 3-net of order 3

Planes, Nets and Webs



Nets

85

1-net of order 3 2-net of order 3 3-net of order 3
4-net (affine

plane) of order 3

Planes, Nets and Webs



Nets

85

1-net of order 3 2-net of order 3 3-net of order 3
4-net (affine

plane) of order 3

A k-net of order n has n? points, nk lines each with n points, in
k parallel classes of n lines each. Two lines are either parallel
or they meet in a unique point.
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1-net of order 3 2-net of order 3 3-net of order 3
4-net (affine

plane) of order 3

A k-net of order n has n? points, nk lines each with n points, in
k parallel classes of n lines each. Two lines are either parallel
or they meet in a unique point.

Here k < n+1; and an (n+1)-net of order n is an affine plane.
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Nets

85

1-net of order 3 2-net of order 3 3-net of order 3
4-net (affine

plane) of order 3

A k-net of order n has n? points, nk lines each with n points, in
k parallel classes of n lines each. Two lines are either parallel
or they meet in a unique point.

Here k < n+1; and an (n+1)-net of order n is an affine plane.

In all known cases, nis a prime power. g
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Orders of Planes

“The survival of finite geometry
as an active field of study
probably depends on

someone finding a finite plane
of non-prime-power order.”

—Gary Ebert
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Orders of Planes

Clement Lam John Thompson
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Coordinatizing Nets

Take a set of n distinct symbols, |F| = n. For a k-net of order n,
we label points by a subset N’ C Fk.
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Coordinatizing Nets

Take a set of ndistinct symbols, |F| = n. For a k-net of order n,
we label points by a subset V' C FX. Point (a1, ap,...,ak) € N
lies on line a; of the j-th parallel class. We may assume
(0,0,...,0) e V.

Equivalent definition of a k-net of order n: N' C F¥, |N| = n?
and each vector (ay, ap, . . ., ax) € N is uniquely determined by
any two of its coordinates.

Unless otherwise indicated, F = F, = {0,1,2,...,p—1} where
p is prime.

Classical affine plane A?F of order p:
N ={(x, y, x+y, 2x+y, ..., (p—1)x+y) : x,y € F}.

Motivating Open Question

o
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Must every plane of prime order p be classical?




(Dual) Codes of Nets

Let N be a k-net of prime order p. The set of all k-tuples
(fi, fo,. .., f) of functions f; : F — F such that f;(0) = 0 and

fi(ai) + f(ae) + -+ fk(ak) = 0
forall (ay, ao, ..., ax) € N forms a vector space V = V(N).
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(Dual) Codes of Nets

Let N be a k-net of prime order p. The set of all k-tuples
(fi, fo,. .., f) of functions f; : F — F such that f;(0) = 0 and

fi(ai) + f(ae) + -+ fk(ak) = 0
forall (ay, ao, ..., ax) € N forms a vector space V = V(N).

E.g. for the classical 4-net N = {(x, y, x+y,x+ay) : x,y € F}
where « # 0, 1, the space V consists of all 4-tuples (fi, >, f3, f4)
of functions F — F where

fi(t) = (at+b)t+ (1—a)ct?,

L(t) = (a+ab)t+ (a—1)act?,
i(t) = —at+ act?,
fa(t) = —bt — ct.
for some a,b,c € F, so dimV = 3. ﬁ
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Conjectured Bounds for dim V

Conjectured rank bound

For any k-net of prime order p,

dim V(NVk) < 3(k — 1)(k — 2).
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Conjectured Bounds for dim V

Conjectured rank bound

For any k-net of prime order p,

dim V(Ny) < 2(k —1)(k —2).
Moreover for any sequence of subnets Ny C Ao C - -+ C Nk,

dimV(Niiq) —dimV(N;) <i—1.
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Conjectured Bounds for dim V

Conjectured rank bound

For any k-net of prime order p,
dim V(Ny) < 2(k —1)(k —2).

Moreover for any sequence of subnets Ny C Ao C - -+ C Nk,

dimV(Niiq) —dimV(N;) <i—1.

If this holds, then all planes of prime order are classical!

Plane curves of degree k have genus g < %(k —1)(k —2). This
is not a coincidence.

The analogue of the conjecture for webs (e.g. over R or C) is
actually a theorem. Some analogues are known in prime d
characteristic, e.g. for webs over F = Qp or Fy(1).
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Codes of 3-nets

For 3-nets of prime order p, the conjectured bound
dimV(N3) < 1 holds. We have equality iff the net is cyclic (i.e. a
subnet of a classical plane).
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Codes of 3-nets

For 3-nets of prime order p, the conjectured bound

dimV(N3) < 1 holds. We have equality iff the net is cyclic (i.e. a
subnet of a classical plane).

Proof. N is a set of p? triples (x, y, z) € F3, F = F,, such that
any triple is uniquely determined by two of its coordinates.
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Codes of 3-nets

For 3-nets of prime order p, the conjectured bound
dimV(N3) < 1 holds. We have equality iff the net is cyclic (i.e. a
subnet of a classical plane).

Proof. N is a set of p? triples (x, y, z) € F3, F = F,, such that
any triple is uniquely determined by two of its coordinates. Let
(f,g,h) € V(N), so f(0) = g(0) = h(0) =0 and

f(x)+9(y)+h(z)=0 forall (x,y,z) e N.

Let ¢ = e2™//P and consider the exponential sum
St = ZXEF Cf(x)'
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Codes of 3-nets

For 3-nets of prime order p, the conjectured bound
dimV(N3) < 1 holds. We have equality iff the net is cyclic (i.e. a
subnet of a classical plane).

Proof. N is a set of p? triples (x, y, z) € F3, F = F,, such that
any triple is uniquely determined by two of its coordinates. Let
(f,g,h) € V(N), so f(0) = g(0) = h(0) =0 and

f(x)+9(y)+h(z)=0 forall (x,y,z) e N.

Let ¢ = e2™//P and consider the exponential sum
St =Y 4er ¢ Then

1Sy = Z ¢f+e0) — pz ¢ M2 = ps,,. g

X, yeF zeF
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Codes of 3-nets

For 3-nets of prime order p, the conjectured bound
dimV(N3) < 1 holds. We have equality iff the net is cyclic (i.e. a
subnet of a classical plane).

We get o
S1SgSh = PSnSh = p|Shl*.
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Codes of 3-nets

For 3-nets of prime order p, the conjectured bound
dimV(N3) < 1 holds. We have equality iff the net is cyclic (i.e. a
subnet of a classical plane).

We get o
S1SgSh = PSnSh = p|Shl*.

By symmetry, |Sy| = S| = S| € {0, p}.

If |Sf| = |Sy| = |Sh| = p then f, g, h are constant functions.
However, f(0) = g(0) = h(0)=0sof=g=h=0.

Otherwise Sy = Sy = S, = 0 so f, g, h are permutations of F.
We may assume f(x) = x, g(y) = y and h(z) = z.
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Codes of 3-nets

For 3-nets of prime order p, the conjectured bound
dimV(N3) < 1 holds. We have equality iff the net is cyclic (i.e. a
subnet of a classical plane).

We get o
StSySh = PShSh = p|Sh|?.
By symmetry, | S| = |Sy| = |Sh| € {0, p}.
If |Sf| = |Sy| = |Sh| = p then f, g, h are constant functions.
However, f(0) = g(0) = h(0)=0sof=g=h=0.

Otherwise Sy = Sy = S, = 0 so f, g, h are permutations of F.

We may assume f(x) = x, g(y) = y and h(z) = z. Since

z = h(z) = —f(x)—g(y) = —x—y we get g
N ={(x,y,—x=y): x,y € F}. O

G. Eric Moorhouse Planes, Nets and Webs



Progress on 4-nets of order p

Let N4 be any 4-net of prime order p. Then
(i) the number of cyclic 3-subnets is 0, 1, 3 or 4.
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Let N4 be any 4-net of prime order p. Then
(i) the number of cyclic 3-subnets is 0, 1, 3 or 4.

(i) Ny has four cyclic 3-subnets iff Ny is classical (a 4-subnet
of A%F,).
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Progress on 4-nets of order p

Let N4 be any 4-net of prime order p. Then

(i) the number of cyclic 3-subnets is 0, 1, 3 or 4.
(i) Ny has four cyclic 3-subnets iff Ny is classical (a 4-subnet
of A%F,).
(iii) If N4 has at least one cyclic 3-subnet, then the conjectured
rank bound holds.
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Progress on 4-nets of order p

Let N4 be any 4-net of prime order p. Then

(i) the number of cyclic 3-subnets is 0, 1, 3 or 4.
(i) Ny has four cyclic 3-subnets iff Ny is classical (a 4-subnet
of A%F,).
(iii) If N4 has at least one cyclic 3-subnet, then the conjectured
rank bound holds.

The rank bound is known to hold for 4-nets of small prime
order p.
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Progress on 4-nets of order p

Let N4 be any 4-net of prime order p. Then

(i) the number of cyclic 3-subnets is 0, 1, 3 or 4.
(i) Ny has four cyclic 3-subnets iff Ny is classical (a 4-subnet
of A%F,).

(iii) If N4 has at least one cyclic 3-subnet, then the conjectured
rank bound holds.

The rank bound is known to hold for 4-nets of small prime
order p.

Much is known about the prime factorization of the associated
exponential sums. And some results are known for k > 4.
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Sophus Lie Henri Poincaré Niels Abel Bernard Saint-Donat

i

oL

Phillip Griffiths Shiing-Shen Chern John Little
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Double Translation Surfaces

Let C; and C, be two smooth
curves passing through the origin in
RY, intersecting transversely (i.e.
not having a common tangent line).
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The Minkowski sum C;+C5 is the
surface consisting of all points
ui+us € RY where u; € C;.
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Double Translation Surfaces

Let C; and C, be two smooth
curves passing through the origin in
RY, intersecting transversely (i.e.
not having a common tangent line).

The Minkowski sum C;+C5 is the
surface consisting of all points
ui+us € RY where u; € C;.

w Suppose curves Cz and C4 also lie
in this same surface, such that each
pair of curves C; and C; intersects
transversely at the origin.
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Double Translation Surfaces

Let C; and C, be two smooth
Gy curves passing through the origin in
RY, intersecting transversely (i.e.
not having a common tangent line).

The Minkowski sum C;+C5 is the
surface consisting of all points
ui+us € RY where u; € C;.

Suppose curves Cz and C4 also lie
in this same surface, such that each
pair of curves C; and C; intersects
transversely at the origin.

If it happens that C3+C4 = C1+C»
(a very strong condition), then this
surface is called a double g
translation surface.
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Double Translation Surfaces

Theorem (Lie)

Any double translation surface in R must lie in a subspace of
dimension at most 3.
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Double Translation Surfaces

Theorem (Lie)

Any double translation surface in R must lie in a subspace of
dimension at most 3. When the surface spans R3, the tangent
lines to the curves C; meet the plane at infinity in a curve C of
degree 4 and genus 3; and the surface may be recovered

from C. d
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Double Translation Surfaces

Example 1 (Lie)

Fix o ¢ {0,1}. The quadric z = ax?® — y2 in R® is a double
translation surface Ci+C, = C3+C4 where

1 = {(5,0,a8%) : s€R};
{(0,t,—?) : teR};
= {(u,au,a(1—a)u?) : ueR};
{(

v,v,(a—1)v?) : v € R}

o
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Double Translation Surfaces

Example 1 (Lie)

Fix o ¢ {0,1}. The quadric z = ax?® — y2 in R® is a double
translation surface Ci+C, = C3+C4 where

Ci = {(s,0,a8%) : s € R};

C, = {(0,t,—1?) : t e R};

Cs = {(u,au,a(1—a)u?) : ueR};
Cy = {(v,v,(a—1)v?) : v €R}.

In this case the curve C at infinity is a singular curve of degree
four with equation XY(X—Y)(aX-Y) =0.
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Double Translation Surfaces

Example 2 (Lie)

Fix a ¢ {0, 3 }. The transcendental surface
z = (x+1)e72Y —1tax(x+2)
in R? is a double translation surface C{+C» = C3+C4 where

Cy = {(s.0, a82+(2a+1)s) : seR};

Co = {(m(1—e722N),t, L(1—e%)) : t e R};
{(0 u,e2—1) : ueR};
= {(v, 5z In(14V),av(v+2)) : v>—1}.

o
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Double Translation Surfaces

Example 2 (Lie)

Fix a ¢ {0, 3 }. The transcendental surface
z = (x+1)e72Y —1tax(x+2)
in R? is a double translation surface C{+C» = C3+C4 where

Ci = {(s,0,as?+(2a+1)s) : s € R};

Co = {(A(1—e2),t, L(1—e ) : teR};
G = {(0,u,6"2¢-1) ; ue R,

Cy = {(v,g—aln(1+v),av(v+2)) cv>—1}.

In this case the curve C at infinity is a singular curve of degree
four with equation XY (X?—YZ) = 0. ti‘
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A (2-dimensional) k-web has point set W ¢ R?, an open
neighbourhood of 0. It has k smooth coordinate functions
Xq,Xo,...,Xx : W — Rsuch that for all / # j, Vx; and Vx; are
linearly independent throughout W; also x;(0) = 0.
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A (2-dimensional) k-web has point set W ¢ R?, an open
neighbourhood of 0. It has k smooth coordinate functions
Xq,Xo,...,Xx : W — Rsuch that for all / # j, Vx; and Vx; are
linearly independent throughout W; also x;(0) = 0.

The level curves for xq, Xo, ..., Xk

intersect transversely, forming the
‘lines’ of the web.
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A (2-dimensional) k-web has point set W ¢ R?, an open
neighbourhood of 0. It has k smooth coordinate functions

Xq,Xo,...,Xx : W — Rsuch that for all / # j, Vx; and Vx; are
linearly independent throughout W; also x;(0) = 0.
The level curves for xq, Xo, . . ., Xk

intersect transversely, forming the
‘lines’ of the web.

. Point P € W has k coordinates
P x1(P),x2(P), ..., x(P), any two of
““/ which uniquely determine the
point P.
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A (2-dimensional) k-web has point set W ¢ R?, an open
neighbourhood of 0. It has k smooth coordinate functions

Xq,Xo,...,Xx : W — Rsuch that for all / # j, Vx; and Vx; are
linearly independent throughout W; also x;(0) = 0.
The level curves for xq, Xo, . . ., Xk

intersect transversely, forming the
‘lines’ of the web.

.. Point P € W has k coordinates
7 xq(P),x(P), ..., xk(P), any two of
““/ which uniquely determine the
point P.

Two webs are the same if they

agree in a neighbourhood of 0 (so
only the germs of the coordinate g
functions x; are relevant).
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A (2-dimensional) k-web has point set W ¢ R?, an open
neighbourhood of 0. It has kK smooth coordinate functions
X1,X2,..., Xk : W — R such that for all / # j, Vx; and Vx; are
linearly independent throughout W; also x;(0) = 0.

Consider the vector space V

consisting of all k-tuples

(fi, fo, ..., fx) of smooth functions

fi : R — R such that f;(0) = 0 and
T RGP 4+ f(x(P)) = 0
0 forall Pew.

o
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A (2-dimensional) k-web has point set W ¢ R?, an open
neighbourhood of 0. It has kK smooth coordinate functions
X1,X2,..., Xk : W — R such that for all / # j, Vx; and Vx; are
linearly independent throughout W; also x;(0) = 0.

.. Consider the vector space V
23800 Ty TN, A consisting of all k-tuples
2 g (fi, fo, ..., fx) of smooth functions
fi : R — R such that f;(0) = 0 and
T2 RGA(P) 4+ + flx(P)) = O
-7 forall Pew.

A

o 0
2 Therankof Wis dimV < 3(k—1)(k—2).

A 3-web d
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A (2-dimensional) k-web has point set W ¢ R?, an open
neighbourhood of 0. It has kK smooth coordinate functions
X1,X2,..., Xk : W — R such that for all / # j, Vx; and Vx; are
linearly independent throughout W; also x;(0) = 0.

.. Consider the vector space V
23800 Ty TN, A consisting of all k-tuples
2 g (fi, fo, ..., fx) of smooth functions
fi : R — R such that f;(0) = 0 and
T2 RGA(P) 4+ + flx(P)) = O
-7 forall Pew.

A

2 . 0
.7  Therankof WisdimV < J(k—1)(k—2).

\‘J\;/?’;; ““, " Equality is attained for algebraic k-webs
v obtained from extremal (i.e. maximal genus)
A 3-web plane curves of degree k. g
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A (2-dimensional) k-web has point set W ¢ R?, an open
neighbourhood of 0. It has kK smooth coordinate functions
X1,X2,..., Xk : W — R such that for all / # j, Vx; and Vx; are
linearly independent throughout W; also x;(0) = 0.

N Consider the vector space V
3 SS9 Ty TN, % consisting of all k-tuples
2 g (fi, fo, ..., fx) of smooth functions
fi : R — R such that f;(0) = 0 and
e AOa(P) + -+ (% (P) =0
-7 forall Pew.

AN
8 o

2 0
.7  Therankof WisdimV < J(k—1)(k—2).
&)

IRy e ” Equality is attained for algebraic k-webs

o obtained from extremal (i.e. maximal genus)
A 3-web plane curves of degree k. For k > 5, other ﬁ
examples are known.
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