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some notation

Finite field
of prime order p: Fp or Zp or GF (p)

Finite field of
prime power order q=pe: Fq or GF (q)

Classical affine plane
defined over F : A2F or AG(2,F )

Classical projective plane
defined over F : P2F or FP2 or PG(2,F )
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Nets

A k -net of order n has n2 points, nk lines each with n points, in
k parallel classes of n lines each. Two lines are either parallel
or they meet in a unique point.

Here k 6 n+1; and an (n+1)-net of order n is an affine plane.

In all known cases, n is a prime power.
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Orders of Planes

“The survival of finite geometry
as an active field of study
probably depends on
someone finding a finite plane
of non-prime-power order.”

—Gary Ebert
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Orders of Planes

Clement Lam John Thompson
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Coordinatizing Nets

Take a set of n distinct symbols, |F | = n. For a k -net of order n,
we label points by a subset N ⊆ F k . Point (a1,a2, . . . ,ak ) ∈ N
lies on line ai of the i-th parallel class. We may assume
(0,0, . . . ,0) ∈ N .

Equivalent definition of a k -net of order n: N ⊆ F k , |N | = n2

and each vector (a1,a2, . . . ,ak ) ∈ N is uniquely determined by
any two of its coordinates.

Unless otherwise indicated, F = Fp = {0,1,2, . . . ,p−1} where
p is prime.

Classical affine plane A2F of order p:
N = {(x , y , x+y , 2x+y , . . . , (p−1)x+y) : x , y ∈ F}.

Motivating Open Question

Must every plane of prime order p be classical?
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(Dual) Codes of Nets

Let N be a k -net of prime order p. The set of all k -tuples
(f1, f2, . . . , fk ) of functions fi : F → F such that fi(0) = 0 and

f1(a1) + f2(a2) + · · ·+ fk (ak ) = 0

for all (a1,a2, . . . ,ak ) ∈ N forms a vector space V = V(N ).

E.g. for the classical 4-net N = {(x , y , x+y , x+αy) : x , y ∈ F}
where α 6= 0,1, the space V consists of all 4-tuples (f1, f2, f3, f4)
of functions F → F where

f1(t) = (a+b)t + (1−α)ct2,

f2(t) = (a+αb)t + (α−1)αct2,

f3(t) = −at + αct2,

f4(t) = −bt − ct2.

for some a,b, c ∈ F , so dimV = 3.
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Conjectured Bounds for dimV

Conjectured rank bound
For any k -net of prime order p,

dimV(Nk ) 6
1
2(k − 1)(k − 2).

Moreover for any sequence of subnets N1 ⊂ N2 ⊂ · · · ⊂ Nk ,

dimV(Ni+1)− dimV(Ni) 6 i − 1.

If this holds, then all planes of prime order are classical!

Plane curves of degree k have genus g 6 1
2(k − 1)(k − 2). This

is not a coincidence.

The analogue of the conjecture for webs (e.g. over R or C) is
actually a theorem. Some analogues are known in prime
characteristic, e.g. for webs over F = Qp or Fp(t).
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Codes of 3-nets

Theorem
For 3-nets of prime order p, the conjectured bound
dimV(N3) 6 1 holds. We have equality iff the net is cyclic (i.e. a
subnet of a classical plane).

Proof. N is a set of p2 triples (x , y , z) ∈ F 3, F = Fp, such that
any triple is uniquely determined by two of its coordinates. Let
(f ,g,h) ∈ V(N ), so f (0) = g(0) = h(0) = 0 and

f (x) + g(y) + h(z) = 0 for all (x , y , z) ∈ N .

Let ζ = e2πi/p and consider the exponential sum
Sf =

∑
x∈F ζ

f (x). Then

Sf Sg =
∑

x ,y∈F

ζ f (x)+g(y) = p
∑
z∈F

ζ−h(z) = pSh.
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Codes of 3-nets

Theorem
For 3-nets of prime order p, the conjectured bound
dimV(N3) 6 1 holds. We have equality iff the net is cyclic (i.e. a
subnet of a classical plane).

We get
Sf SgSh = pShSh = p|Sh|2.

By symmetry, |Sf | = |Sg | = |Sh| ∈ {0,p}.

If |Sf | = |Sg | = |Sh| = p then f ,g,h are constant functions.
However, f (0) = g(0) = h(0) = 0 so f = g = h = 0.

Otherwise Sf = Sg = Sh = 0 so f ,g,h are permutations of F .
We may assume f (x) = x , g(y) = y and h(z) = z. Since
z = h(z) = −f (x)−g(y) = −x−y we get

N = {(x , y ,−x−y) : x , y ∈ F}.
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Progress on 4-nets of order p

Theorem
Let N4 be any 4-net of prime order p. Then

(i) the number of cyclic 3-subnets is 0, 1, 3 or 4.
(ii) N4 has four cyclic 3-subnets iff N4 is classical (a 4-subnet

of A2Fp).
(iii) If N4 has at least one cyclic 3-subnet, then the conjectured

rank bound holds.

The rank bound is known to hold for 4-nets of small prime
order p.

Much is known about the prime factorization of the associated
exponential sums. And some results are known for k > 4.

G. Eric Moorhouse Planes, Nets and Webs
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of A2Fp).
(iii) If N4 has at least one cyclic 3-subnet, then the conjectured

rank bound holds.
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Double Translation Surfaces
Let C1 and C2 be two smooth
curves passing through the origin in
Rd , intersecting transversely (i.e.
not having a common tangent line).

The Minkowski sum C1+C2 is the
surface consisting of all points
u1+u2 ∈ Rd where ui ∈ Ci .

Suppose curves C3 and C4 also lie
in this same surface, such that each
pair of curves Ci and Cj intersects
transversely at the origin.

If it happens that C3+C4 = C1+C2
(a very strong condition), then this
surface is called a double
translation surface.
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Double Translation Surfaces

Theorem (Lie)

Any double translation surface in Rd must lie in a subspace of
dimension at most 3. When the surface spans R3, the tangent
lines to the curves Ci meet the plane at infinity in a curve C of
degree 4 and genus 3; and the surface may be recovered
from C.

G. Eric Moorhouse Planes, Nets and Webs
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Double Translation Surfaces

Example 1 (Lie)

Fix α /∈ {0,1}. The quadric z = αx2 − y2 in R3 is a double
translation surface C1+C2 = C3+C4 where

C1 = {(s,0, αs2) : s ∈ R};
C2 = {(0, t ,−t2) : t ∈ R};
C3 = {(u, αu, α(1−α)u2) : u ∈ R};
C4 = {(v , v , (α−1)v2) : v ∈ R}.

In this case the curve C at infinity is a singular curve of degree
four with equation XY (X−Y )(αX−Y ) = 0.
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Double Translation Surfaces

Example 2 (Lie)

Fix α /∈
{

0, 1
2

}
. The transcendental surface

z = (x+1)e−2αy−1+αx(x+2)

in R3 is a double translation surface C1+C2 = C3+C4 where

C1 =
{(

s,0, αs2+(2α+1)s
)
: s ∈ R

}
;

C2 =
{( 1

2α(1−e−2αt), t , 1
4α(1−e−4αt)

)
: t ∈ R

}
;

C3 =
{(

0,u,e−2αu−1
)
: u ∈ R

}
;

C4 =
{(

v , 1
2α ln(1+v), αv(v+2)

)
: v >−1

}
.

In this case the curve C at infinity is a singular curve of degree
four with equation XY (X 2−YZ ) = 0.
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Webs

A (2-dimensional) k -web has point setW ⊂ R2, an open
neighbourhood of 0. It has k smooth coordinate functions
x1, x2, . . . , xk :W → R such that for all i 6= j , ∇xi and ∇xj are
linearly independent throughoutW; also xi(0) = 0.

A 3-web

The level curves for x1, x2, . . . , xk
intersect transversely, forming the
‘lines’ of the web.

Point P ∈ W has k coordinates
x1(P), x2(P), . . . , xk (P), any two of
which uniquely determine the
point P.

Two webs are the same if they
agree in a neighbourhood of 0 (so
only the germs of the coordinate
functions xi are relevant).
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Webs

A (2-dimensional) k -web has point setW ⊂ R2, an open
neighbourhood of 0. It has k smooth coordinate functions
x1, x2, . . . , xk :W → R such that for all i 6= j , ∇xi and ∇xj are
linearly independent throughoutW; also xi(0) = 0.

A 3-web

Consider the vector space V
consisting of all k -tuples
(f1, f2, . . . , fk ) of smooth functions
fi : R→ R such that fi(0) = 0 and

f1(x1(P)) + · · ·+ fk (xk (P)) = 0

for all P ∈ W.

The rank ofW is dimV 6 1
2(k−1)(k−2).

Equality is attained for algebraic k -webs
obtained from extremal (i.e. maximal genus)
plane curves of degree k . For k > 5, other
examples are known.
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