Planes, Nets and Webs Lecture 1

G. Eric Moorhouse

Department of Mathematics University of Wyoming

Zhejiang University—March 2019

ă

K 御 ▶ K ヨ ▶ K ヨ ▶

4 0 8

"Combinatorics is the slums of topology." —Henry Whitehead

Case in point: the SECC

We hope this view of combinatorics is changing thanks to the influence of people like

Terence Tao Timothy Gowers László Babai

 \leftarrow \Box

"Combinatorics is the slums of topology." —Henry Whitehead

Case in point: the SECC

We hope this view of combinatorics is changing thanks to the influence of people like

Terence Tao Timothy Gowers László Babai

4 € 1 ×

"Combinatorics is the slums of topology." —Henry Whitehead

Case in point: the SECC

We hope this view of combinatorics is changing thanks to the influence of people like

Terence Tao Timothy Gowers László Babai

I am grateful to those who have inspired my mathematical development:

Chat Yin Ho William Kantor Peter Cameron

Finite field
of prime order *p*:

 \mathbb{F}_p or \mathbb{Z}_p or $GF(p)$

Finite field of prime power order *q*=*p e*

Classical affine plane defined over F :

Classical projective plane defined over *F*:

 \mathbb{F}_q or $GF(q)$

 A^2F or $AG(2, F)$

 ${}^{2}F$ or $F\mathbb{P}^{2}$ or $PG(2,F)$

←何 → → ヨ →

Planes, Nets and Webs Lecture 1

G. Eric Moorhouse

Department of Mathematics University of Wyoming

Zhejiang University—March 2019

ă

K 御 ▶ K ヨ ▶ K ヨ ▶

4 0 8

Here $k \le n+1$; and an $(n+1)$ -net of order *n* is an affine plane.

In all known cases, *n* is a prime power.

∢ 伊 ≯

Here $k \le n+1$; and an $(n+1)$ -net of order *n* is an affine plane.

In all known cases, *n* is a prime power.

∢ 伊 ≯

Here $k \le n+1$; and an $(n+1)$ -net of order *n* is an affine plane.

In all known cases, *n* is a prime power.

← 伊 ▶

Here $k \le n+1$; and an $(n+1)$ -net of order *n* is an affine plane.

In all known cases, *n* is a prime power.

Here $k \le n+1$; and an $(n+1)$ -net of order *n* is an affine plane.

In all known cases, *n* is a prime power.

4 伊 ▶

Here $k \le n+1$; and an $(n+1)$ -net of order *n* is an affine plane.

In all known cases, *n* is a prime power.

← 中 →

Here $k \le n+1$; and an $(n+1)$ -net of order *n* is an affine plane.

In all known cases, *n* is a prime power.

4 间

Orders of Planes

"The survival of finite geometry as an active field of study probably depends on someone finding a finite plane of non-prime-power order."

—Gary Ebert

Orders of Planes

Clement Lam John Thompson

€ □ 下

K 伊 ▶ K 手

重

 $\mathbb{R}^d \times \mathbb{R}^d$

Take a set of *n* distinct symbols, $|F| = n$. For a *k*-net of order *n*, $\bm{\mathsf{w}}$ e label points by a subset $\mathcal{N} \subseteq \bm{\mathit{F}}^{\bm{k}}.$ Point $(a_1, a_2, \ldots, a_k) \in \mathcal{N}$ lies on line *aⁱ* of the *i*-th parallel class. We may assume $(0, 0, \ldots, 0) \in \mathcal{N}$.

Equivalent definition of a *k*-net of order *n*: $\mathcal{N} \subseteq F^k$, $|\mathcal{N}| = n^2$ and each vector $(a_1, a_2, \ldots, a_k) \in \mathcal{N}$ is uniquely determined by any two of its coordinates.

Unless otherwise indicated, $F = \mathbb{F}_p = \{0, 1, 2, \ldots, p-1\}$ where *p* is prime.

Take a set of *n* distinct symbols, $|F| = n$. For a *k*-net of order *n*, we label points by a subset $\mathcal{N} \subseteq \mathcal{F}^k.$ Point $(a_1, a_2, \ldots, a_k) \in \mathcal{N}$ lies on line *aⁱ* of the *i*-th parallel class. We may assume $(0, 0, \ldots, 0) \in \mathcal{N}$.

Equivalent definition of a *k*-net of order *n*: $\mathcal{N} \subseteq F^k$, $|\mathcal{N}| = n^2$ and each vector $(a_1, a_2, \ldots, a_k) \in \mathcal{N}$ is uniquely determined by any two of its coordinates.

Unless otherwise indicated, $F = \mathbb{F}_p = \{0, 1, 2, \ldots, p-1\}$ where *p* is prime.

Take a set of *n* distinct symbols, $|F| = n$. For a *k*-net of order *n*, we label points by a subset $\mathcal{N} \subseteq \mathcal{F}^k.$ Point $(a_1, a_2, \ldots, a_k) \in \mathcal{N}$ lies on line *aⁱ* of the *i*-th parallel class. We may assume $(0, 0, \ldots, 0) \in \mathcal{N}$.

Equivalent definition of a *k*-net of order *n*: $\mathcal{N} \subseteq F^k$, $|\mathcal{N}| = n^2$ and each vector $(a_1, a_2, \ldots, a_k) \in \mathcal{N}$ is uniquely determined by any two of its coordinates.

Unless otherwise indicated, $F = \mathbb{F}_p = \{0, 1, 2, \ldots, p-1\}$ where *p* is prime.

Take a set of *n* distinct symbols, $|F| = n$. For a *k*-net of order *n*, we label points by a subset $\mathcal{N} \subseteq \mathcal{F}^k.$ Point $(a_1, a_2, \ldots, a_k) \in \mathcal{N}$ lies on line *aⁱ* of the *i*-th parallel class. We may assume $(0, 0, \ldots, 0) \in \mathcal{N}$.

Equivalent definition of a *k*-net of order *n*: $\mathcal{N} \subseteq \mathcal{F}^k$, $|\mathcal{N}| = n^2$ and each vector $(a_1, a_2, \ldots, a_k) \in \mathcal{N}$ is uniquely determined by any two of its coordinates.

Unless otherwise indicated, $F = \mathbb{F}_p = \{0, 1, 2, \ldots, p-1\}$ where *p* is prime.

Take a set of *n* distinct symbols, $|F| = n$. For a *k*-net of order *n*, we label points by a subset $\mathcal{N} \subseteq \mathcal{F}^k.$ Point $(a_1, a_2, \ldots, a_k) \in \mathcal{N}$ lies on line *aⁱ* of the *i*-th parallel class. We may assume $(0, 0, \ldots, 0) \in \mathcal{N}$.

Equivalent definition of a *k*-net of order *n*: $\mathcal{N} \subseteq \mathcal{F}^k$, $|\mathcal{N}| = n^2$ and each vector $(a_1, a_2, \ldots, a_k) \in \mathcal{N}$ is uniquely determined by any two of its coordinates.

Unless otherwise indicated, $F = \mathbb{F}_p = \{0, 1, 2, \ldots, p-1\}$ where *p* is prime.

Take a set of *n* distinct symbols, $|F| = n$. For a *k*-net of order *n*, we label points by a subset $\mathcal{N} \subseteq \mathcal{F}^k.$ Point $(a_1, a_2, \ldots, a_k) \in \mathcal{N}$ lies on line *aⁱ* of the *i*-th parallel class. We may assume $(0, 0, \ldots, 0) \in \mathcal{N}$.

Equivalent definition of a *k*-net of order *n*: $\mathcal{N} \subseteq \mathcal{F}^k$, $|\mathcal{N}| = n^2$ and each vector $(a_1, a_2, \ldots, a_k) \in \mathcal{N}$ is uniquely determined by any two of its coordinates.

Unless otherwise indicated, $F = \mathbb{F}_p = \{0, 1, 2, \ldots, p-1\}$ where *p* is prime.

Classical affine plane A ²*F* of order *p*:

Take a set of *n* distinct symbols, $|F| = n$. For a *k*-net of order *n*, we label points by a subset $\mathcal{N} \subseteq \mathcal{F}^k.$ Point $(a_1, a_2, \ldots, a_k) \in \mathcal{N}$ lies on line *aⁱ* of the *i*-th parallel class. We may assume $(0, 0, \ldots, 0) \in \mathcal{N}$.

Equivalent definition of a *k*-net of order *n*: $\mathcal{N} \subseteq \mathcal{F}^k$, $|\mathcal{N}| = n^2$ and each vector $(a_1, a_2, \ldots, a_k) \in \mathcal{N}$ is uniquely determined by any two of its coordinates.

Unless otherwise indicated, $F = \mathbb{F}_p = \{0, 1, 2, \ldots, p-1\}$ where *p* is prime.

Classical affine plane A ²*F* of order *p*:

(Dual) Codes of Nets

Let N be a *k*-net of prime order *p*. The set of all *k*-tuples (f_1, f_2, \ldots, f_k) of functions $f_i : F \to F$ such that $f_i(0) = 0$ and $f_1(a_1) + f_2(a_2) + \cdots + f_k(a_k) = 0$

for all $(a_1, a_2, \ldots, a_k) \in \mathcal{N}$ forms a vector space $\mathcal{V} = \mathcal{V}(\mathcal{N})$.

E.g. for the classical 4-net $\mathcal{N} = \{(x, y, x+y, x+\alpha y) : x, y \in F\}$ where $\alpha \neq 0, 1$, the space V consists of all 4-tuples (f_1, f_2, f_3, f_4) of functions $F \rightarrow F$ where

$$
f_1(t) = (a+b)t + (1-\alpha)ct^2,
$$

\n
$$
f_2(t) = (a+\alpha b)t + (\alpha-1)\alpha ct^2,
$$

\n
$$
f_3(t) = -at + \alpha ct^2,
$$

\n
$$
f_4(t) = -bt - ct^2.
$$

for some *a*, *b*, $c \in F$, so dim $V = 3$.

K ロメ K 御 メ K 君 メ K 君 X

(Dual) Codes of Nets

Let N be a *k*-net of prime order *p*. The set of all *k*-tuples (f_1, f_2, \ldots, f_k) of functions $f_i : F \to F$ such that $f_i(0) = 0$ and

$$
f_1(a_1) + f_2(a_2) + \cdots + f_k(a_k) = 0
$$

for all $(a_1, a_2, \ldots, a_k) \in \mathcal{N}$ forms a vector space $\mathcal{V} = \mathcal{V}(\mathcal{N})$.

E.g. for the classical 4-net $\mathcal{N} = \{(x, y, x+y, x+\alpha y) : x, y \in F\}$ where $\alpha \neq 0, 1$, the space V consists of all 4-tuples (f_1, f_2, f_3, f_4) of functions $F \to F$ where

$$
f_1(t) = (a+b)t + (1-\alpha)ct^2,
$$

\n
$$
f_2(t) = (a+\alpha b)t + (\alpha-1)\alpha ct^2,
$$

\n
$$
f_3(t) = -at + \alpha ct^2,
$$

\n
$$
f_4(t) = -bt - ct^2.
$$

for some *a*, *b*, $c \in F$, so dim $V = 3$.

K 御 × × 唐 × × 唐 ≯

For any *k*-net of prime order *p*,

$$
\dim \mathcal{V}(\mathcal{N}_k) \leqslant \frac{1}{2}(k-1)(k-2).
$$

Moreover for any sequence of subnets $\mathcal{N}_1 \subset \mathcal{N}_2 \subset \cdots \subset \mathcal{N}_k$,

 $\dim \mathcal{V}(\mathcal{N}_{i+1}) - \dim \mathcal{V}(\mathcal{N}_i) \leq i - 1.$

If this holds, then all planes of prime order are classical!

Plane curves of degree *k* have genus $g \leqslant \frac{1}{2}$ $\frac{1}{2}(k-1)(k-2)$. This is not a coincidence.

The analogue of the conjecture for webs (e.g. over $\mathbb R$ or $\mathbb C$) is actually a theorem. Some analogues are known in prime characteristic, e.g. for webs over $F = \mathbb{Q}_p$ or $\mathbb{F}_p(t)$.

K ロ ト K 何 ト K ヨ ト K ヨ

For any *k*-net of prime order *p*,

$$
\dim \mathcal{V}(\mathcal{N}_k) \leqslant \frac{1}{2}(k-1)(k-2).
$$

Moreover for any sequence of subnets $\mathcal{N}_1 \subset \mathcal{N}_2 \subset \cdots \subset \mathcal{N}_k$,

$$
\dim \mathcal{V}(\mathcal{N}_{i+1}) - \dim \mathcal{V}(\mathcal{N}_i) \leqslant i-1.
$$

If this holds, then all planes of prime order are classical!

Plane curves of degree *k* have genus $g \leqslant \frac{1}{2}$ $\frac{1}{2}(k-1)(k-2)$. This is not a coincidence.

The analogue of the conjecture for webs (e.g. over $\mathbb R$ or $\mathbb C$) is actually a theorem. Some analogues are known in prime characteristic, e.g. for webs over $F = \mathbb{Q}_p$ or $\mathbb{F}_p(t)$.

K ロ ▶ K 伊 ▶ K ヨ ▶

For any *k*-net of prime order *p*,

$$
\dim \mathcal{V}(\mathcal{N}_k) \leqslant \frac{1}{2}(k-1)(k-2).
$$

Moreover for any sequence of subnets $\mathcal{N}_1 \subset \mathcal{N}_2 \subset \cdots \subset \mathcal{N}_k$,

$$
\dim \mathcal{V}(\mathcal{N}_{i+1}) - \dim \mathcal{V}(\mathcal{N}_i) \leqslant i-1.
$$

If this holds, then all planes of prime order are classical!

Plane curves of degree *k* have genus $g \leqslant \frac{1}{2}$ $\frac{1}{2}(k-1)(k-2)$. This is not a coincidence.

The analogue of the conjecture for webs (e.g. over $\mathbb R$ or $\mathbb C$) is actually a theorem. Some analogues are known in prime characteristic, e.g. for webs over $F = \mathbb{Q}_p$ or $\mathbb{F}_p(t)$.

K ロ ト K 何 ト K ヨ ト K

For any *k*-net of prime order *p*,

$$
\dim \mathcal{V}(\mathcal{N}_k) \leqslant \frac{1}{2}(k-1)(k-2).
$$

Moreover for any sequence of subnets $\mathcal{N}_1 \subset \mathcal{N}_2 \subset \cdots \subset \mathcal{N}_k$,

 $\dim \mathcal{V}(\mathcal{N}_{i+1}) - \dim \mathcal{V}(\mathcal{N}_i) \leq i - 1.$

If this holds, then all planes of prime order are classical!

Plane curves of degree *k* have genus $g \leqslant \frac{1}{2}$ $\frac{1}{2}(k-1)(k-2)$. This is not a coincidence.

The analogue of the conjecture for webs (e.g. over $\mathbb R$ or $\mathbb C$) is actually a theorem. Some analogues are known in prime characteristic, e.g. for webs over $F = \mathbb{Q}_p$ or $\mathbb{F}_p(t)$.

K ロ ト K 何 ト K ヨ ト K ヨ

For any *k*-net of prime order *p*,

$$
\dim \mathcal{V}(\mathcal{N}_k) \leqslant \frac{1}{2}(k-1)(k-2).
$$

Moreover for any sequence of subnets $\mathcal{N}_1 \subset \mathcal{N}_2 \subset \cdots \subset \mathcal{N}_k$,

 $\dim \mathcal{V}(\mathcal{N}_{i+1}) - \dim \mathcal{V}(\mathcal{N}_i) \leq i - 1.$

If this holds, then all planes of prime order are classical!

Plane curves of degree *k* have genus $g \leqslant \frac{1}{2}$ $\frac{1}{2}(k-1)(k-2)$. This is not a coincidence.

The analogue of the conjecture for webs (e.g. over $\mathbb R$ or $\mathbb C$) is actually a theorem. Some analogues are known in prime characteristic, e.g. for webs over $F = \mathbb{Q}_p$ or $\mathbb{F}_p(t)$.

K ロ ト K 何 ト K ヨ ト K ヨ

For 3-nets of prime order p, the conjectured bound $\dim \mathcal{V}(\mathcal{N}_3) \leq 1$ *holds. We have equality iff the net is cyclic (i.e. a subnet of a classical plane).*

Proof. N is a set of p^2 triples $(x, y, z) \in F^3$, $F = \mathbb{F}_p$, such that any triple is uniquely determined by two of its coordinates. Let $(f, g, h) \in V(\mathcal{N})$, so $f(0) = g(0) = h(0) = 0$ and

f(*x*) + *g*(*y*) + *h*(*z*) = 0 for all $(x, y, z) \in \mathcal{N}$.

Let $\zeta = e^{2\pi i/p}$ and consider the exponential sum $S_f = \sum_{x \in F} \zeta^{f(x)}$. Then

$$
S_f S_g = \sum_{x,y \in F} \zeta^{f(x)+g(y)} = p \sum_{z \in F} \zeta^{-h(z)} = p \overline{S_h}.
$$

 $\langle \oplus \rangle$ + $\langle \oplus \rangle$ + \langle

For 3-nets of prime order p, the conjectured bound $\dim \mathcal{V}(\mathcal{N}_3) \leq 1$ *holds. We have equality iff the net is cyclic (i.e. a subnet of a classical plane).*

Proof. N is a set of p^2 triples $(x, y, z) \in F^3$, $F = \mathbb{F}_p$, such that any triple is uniquely determined by two of its coordinates. Let $(f, g, h) \in V(\mathcal{N})$, so $f(0) = g(0) = h(0) = 0$ and

$$
f(x) + g(y) + h(z) = 0 \quad \text{for all } (x, y, z) \in \mathcal{N}.
$$

Let $\zeta = e^{2\pi i/p}$ and consider the exponential sum $S_f = \sum_{x \in F} \zeta^{f(x)}$. Then

$$
S_f S_g = \sum_{x,y \in F} \zeta^{f(x)+g(y)} = p \sum_{z \in F} \zeta^{-h(z)} = p \overline{S_h}.
$$

(何) (ミ) :

For 3-nets of prime order p, the conjectured bound $\dim \mathcal{V}(\mathcal{N}_3) \leq 1$ *holds. We have equality iff the net is cyclic (i.e. a subnet of a classical plane).*

Proof. N is a set of p^2 triples $(x, y, z) \in F^3$, $F = \mathbb{F}_p$, such that any triple is uniquely determined by two of its coordinates. Let $(f, g, h) \in V(\mathcal{N})$, so $f(0) = g(0) = h(0) = 0$ and

$$
f(x) + g(y) + h(z) = 0 \quad \text{for all } (x, y, z) \in \mathcal{N}.
$$

Let $\zeta = e^{2\pi i/p}$ and consider the exponential sum $S_f = \sum_{x \in F} \zeta^{f(x)}$. Then

$$
S_f S_g = \sum_{x,y \in F} \zeta^{f(x)+g(y)} = p \sum_{z \in F} \zeta^{-h(z)} = p \overline{S_h}.
$$

K 母 → K ヨ →

For 3-nets of prime order p, the conjectured bound $\dim \mathcal{V}(\mathcal{N}_3) \leq 1$ *holds. We have equality iff the net is cyclic (i.e. a subnet of a classical plane).*

Proof. N is a set of p^2 triples $(x, y, z) \in F^3$, $F = \mathbb{F}_p$, such that any triple is uniquely determined by two of its coordinates. Let $(f, g, h) \in V(\mathcal{N})$, so $f(0) = g(0) = h(0) = 0$ and

$$
f(x) + g(y) + h(z) = 0 \quad \text{for all } (x, y, z) \in \mathcal{N}.
$$

Let $\zeta = e^{2\pi i/p}$ and consider the exponential sum $S_f = \sum_{x \in F} \zeta^{f(x)}.$ Then

$$
S_f S_g = \sum_{x,y \in F} \zeta^{f(x)+g(y)} = \rho \sum_{z \in F} \zeta^{-h(z)} = \rho \overline{S_h}.
$$

← 何 ト + ヨ ト

For 3-nets of prime order p, the conjectured bound $\dim \mathcal{V}(\mathcal{N}_3) \leq 1$ *holds. We have equality iff the net is cyclic (i.e. a subnet of a classical plane).*

We get

$$
S_f S_g S_h = p S_h \overline{S_h} = p |S_h|^2.
$$

By symmetry, $|S_f| = |S_g| = |S_h| \in \{0, p\}.$

If $|S_f| = |S_g| = |S_h| = p$ then *f*, *g*, *h* are constant functions. However, $f(0) = g(0) = h(0) = 0$ so $f = g = h = 0$.

Otherwise $S_f = S_g = S_h = 0$ so *f*, *g*, *h* are permutations of *F*. We may assume $f(x) = x$, $g(y) = y$ and $h(z) = z$. Since $z = h(z) = -f(x) - g(y) = -x - y$ we get

$$
\mathcal{N} = \{ (x, y, -x-y) : x, y \in F \}.
$$

K ロ ⊁ K 何 ≯ K ヨ ⊁ K ヨ ⊁

For 3-nets of prime order p, the conjectured bound $\dim \mathcal{V}(\mathcal{N}_3) \leq 1$ *holds. We have equality iff the net is cyclic (i.e. a subnet of a classical plane).*

We get

$$
S_f S_g S_h = p S_h \overline{S_h} = p |S_h|^2.
$$

By symmetry, $|\mathcal{S}_f|=|\mathcal{S}_g|=|\mathcal{S}_h|\in\{0,\rho\}.$

If $|S_f| = |S_g| = |S_h| = p$ then *f*, *g*, *h* are constant functions. However, $f(0) = g(0) = h(0) = 0$ so $f = g = h = 0$.

Otherwise $S_f = S_g = S_h = 0$ so *f*, *g*, *h* are permutations of *F*. We may assume $f(x) = x$, $g(y) = y$ and $h(z) = z$. Since $z = h(z) = -f(x) - g(y) = -x - y$ we get

$$
\mathcal{N} = \{ (x, y, -x-y) : x, y \in F \}.
$$

≮ロト ⊀ 何 ト ⊀ ヨ ト ⊀ ヨ ト

For 3-nets of prime order p, the conjectured bound $\dim \mathcal{V}(\mathcal{N}_3) \leq 1$ *holds. We have equality iff the net is cyclic (i.e. a subnet of a classical plane).*

We get

$$
S_f S_g S_h = p S_h \overline{S_h} = p |S_h|^2.
$$

By symmetry, $|\mathcal{S}_f|=|\mathcal{S}_g|=|\mathcal{S}_h|\in\{0,\rho\}.$

If $|S_f| = |S_g| = |S_h| = p$ then *f*, *g*, *h* are constant functions. However, $f(0) = g(0) = h(0) = 0$ so $f = g = h = 0$.

Otherwise $S_f = S_g = S_h = 0$ so *f*, *g*, *h* are permutations of *F*. We may assume $f(x) = x$, $g(y) = y$ and $h(z) = z$. Since $z = h(z) = -f(x) - g(y) = -x - y$ we get

$$
\mathcal{N} = \{ (x, y, -x-y) : x, y \in F \}.
$$

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

For 3-nets of prime order p, the conjectured bound $\dim \mathcal{V}(\mathcal{N}_3) \leq 1$ *holds. We have equality iff the net is cyclic (i.e. a subnet of a classical plane).*

We get

$$
S_f S_g S_h = p S_h \overline{S_h} = p |S_h|^2.
$$

By symmetry, $|\mathcal{S}_f|=|\mathcal{S}_g|=|\mathcal{S}_h|\in\{0,\rho\}.$

If $|S_f| = |S_g| = |S_h| = p$ then *f*, *g*, *h* are constant functions. However, $f(0) = g(0) = h(0) = 0$ so $f = g = h = 0$.

Otherwise $S_f = S_g = S_h = 0$ so *f*, *g*, *h* are permutations of *F*. **We may assume** $f(x) = x$ **,** $g(y) = y$ **and** $h(z) = z$ **.** Since $z = h(z) = -f(x) - g(y) = -x - y$ we get

$$
\mathcal{N} = \{ (x, y, -x-y) : x, y \in F \}.
$$

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

For 3-nets of prime order p, the conjectured bound $\dim \mathcal{V}(\mathcal{N}_3) \leq 1$ *holds. We have equality iff the net is cyclic (i.e. a subnet of a classical plane).*

We get

$$
S_f S_g S_h = p S_h \overline{S_h} = p |S_h|^2.
$$

By symmetry, $|\mathcal{S}_f|=|\mathcal{S}_g|=|\mathcal{S}_h|\in\{0,\rho\}.$

If $|S_f| = |S_g| = |S_h| = p$ then *f*, *g*, *h* are constant functions. However, $f(0) = g(0) = h(0) = 0$ so $f = g = h = 0$.

Otherwise $S_f = S_g = S_h = 0$ so f, g, h are permutations of F . We may assume $f(x) = x$, $g(y) = y$ and $h(z) = z$. Since $z = h(z) = -f(x) - g(y) = -x - y$ we get $\mathcal{N} = \{ (x, y, -x-y) : x, y \in F \}.$

K ロ ▶ K 何 ▶ K ヨ ▶ K ヨ ▶

- *Let* N⁴ *be any 4-net of prime order p. Then*
	- (i) *the number of cyclic 3-subnets is 0, 1, 3 or 4.*
	- (ii) N⁴ *has four cyclic 3-subnets iff* N⁴ *is classical (a 4-subnet of* $\mathbb{A}^2 \mathbb{F}_p$).
- (iii) *If* N⁴ *has at least one cyclic 3-subnet, then the conjectured rank bound holds.*

The rank bound is known to hold for 4-nets of small prime order *p*.

Much is known about the prime factorization of the associated exponential sums. And some results are known for $k > 4$.

 $\left\{ \bigoplus_{i=1}^{n} x_i \in \mathbb{R} \right\}$ and $\left\{ \bigoplus_{i=1}^{n} x_i \in \mathbb{R} \right\}$

Let N⁴ *be any 4-net of prime order p. Then*

- (i) *the number of cyclic 3-subnets is 0, 1, 3 or 4.*
- (ii) N⁴ *has four cyclic 3-subnets iff* N⁴ *is classical (a 4-subnet of* $\mathbb{A}^2 \mathbb{F}_p$).
- (iii) *If* N⁴ *has at least one cyclic 3-subnet, then the conjectured rank bound holds.*

The rank bound is known to hold for 4-nets of small prime order *p*.

Much is known about the prime factorization of the associated exponential sums. And some results are known for $k > 4$.

K 何 ▶ K ヨ ▶ K ヨ

Let N⁴ *be any 4-net of prime order p. Then*

- (i) *the number of cyclic 3-subnets is 0, 1, 3 or 4.*
- (ii) N⁴ *has four cyclic 3-subnets iff* N⁴ *is classical (a 4-subnet of* $\mathbb{A}^2 \mathbb{F}_p$).
- (iii) *If* N⁴ *has at least one cyclic 3-subnet, then the conjectured rank bound holds.*

The rank bound is known to hold for 4-nets of small prime order *p*.

Much is known about the prime factorization of the associated exponential sums. And some results are known for $k > 4$.

K 何 ▶ K ヨ ▶ K ヨ

Let N⁴ *be any 4-net of prime order p. Then*

- (i) *the number of cyclic 3-subnets is 0, 1, 3 or 4.*
- (ii) N⁴ *has four cyclic 3-subnets iff* N⁴ *is classical (a 4-subnet of* $\mathbb{A}^2 \mathbb{F}_p$).
- (iii) *If* N⁴ *has at least one cyclic 3-subnet, then the conjectured rank bound holds.*

The rank bound is known to hold for 4-nets of small prime order *p*.

Much is known about the prime factorization of the associated exponential sums. And some results are known for $k > 4$.

K 何 ▶ K ヨ ▶ K

Let N⁴ *be any 4-net of prime order p. Then*

- (i) *the number of cyclic 3-subnets is 0, 1, 3 or 4.*
- (ii) N⁴ *has four cyclic 3-subnets iff* N⁴ *is classical (a 4-subnet of* $\mathbb{A}^2 \mathbb{F}_p$).
- (iii) *If* N⁴ *has at least one cyclic 3-subnet, then the conjectured rank bound holds.*

The rank bound is known to hold for 4-nets of small prime order *p*.

Much is known about the prime factorization of the associated exponential sums. And some results are known for *k* > 4.

← 伊 ト + ヨ ト

Sophus Lie Henri Poincaré Niels Abel Bernard Saint-Donat

Phillip Griffiths Shiing-Shen Chern [J](#page-43-0)[oh](#page-44-0)[n](#page-45-0) [Li](#page-0-0)[ttle](#page-62-0)

 290

Let C_1 and C_2 be two smooth curves passing through the origin in \mathbb{R}^d , intersecting transversely (i.e. not having a common tangent line).

The Minkowski sum C_1+C_2 is the surface consisting of all points $u_1 + u_2 \in \mathbb{R}^d$ where $u_i \in C_i$.

Suppose curves C_3 and C_4 also lie in this same surface, such that each pair of curves *Cⁱ* and *C^j* intersects transversely at the origin.

If it happens that $C_3+C_4=C_1+C_2$ (a very strong condition), then this surface is called a double translation surface.

 4 ロ } 4 6 } 4 3 } 4

Let C_1 and C_2 be two smooth curves passing through the origin in \mathbb{R}^d , intersecting transversely (i.e. not having a common tangent line).

The Minkowski sum C_1+C_2 is the surface consisting of all points $u_1+u_2 \in \mathbb{R}^d$ where $u_i \in C_i$.

Suppose curves C_3 and C_4 also lie in this same surface, such that each pair of curves *Cⁱ* and *C^j* intersects transversely at the origin.

If it happens that $C_3 + C_4 = C_1 + C_2$ (a very strong condition), then this surface is called a double translation surface.

 4 ロ } 4 6 } 4 3 } 4

Let C_1 and C_2 be two smooth curves passing through the origin in \mathbb{R}^d , intersecting transversely (i.e. not having a common tangent line).

The Minkowski sum C_1+C_2 is the surface consisting of all points $u_1+u_2 \in \mathbb{R}^d$ where $u_i \in C_i$.

Suppose curves C_3 and C_4 also lie in this same surface, such that each pair of curves *Cⁱ* and *C^j* intersects transversely at the origin.

If it happens that $C_3 + C_4 = C_1 + C_2$ (a very strong condition), then this surface is called a double translation surface.

 $($ \Box \rightarrow $($ \oplus \rightarrow $($ \equiv \rightarrow $($

Let C_1 and C_2 be two smooth curves passing through the origin in \mathbb{R}^d , intersecting transversely (i.e. not having a common tangent line).

The Minkowski sum C_1+C_2 is the surface consisting of all points $u_1+u_2 \in \mathbb{R}^d$ where $u_i \in C_i$.

Suppose curves C_3 and C_4 also lie in this same surface, such that each pair of curves *Cⁱ* and *C^j* intersects transversely at the origin.

If it happens that $C_3+C_4=C_1+C_2$ (a very strong condition), then this surface is called a double translation surface.

K 伊 ト K ヨ ト

Theorem (Lie)

Any double translation surface in R *^d must lie in a subspace of dimension at most 3. When the surface spans* R 3 *, the tangent lines to the curves Cⁱ meet the plane at infinity in a curve C of degree 4 and genus 3; and the surface may be recovered from C.*

 Ω

Theorem (Lie)

Any double translation surface in R *^d must lie in a subspace of* dimension at most 3. When the surface spans \mathbb{R}^3 , the tangent *lines to the curves Cⁱ meet the plane at infinity in a curve C of degree 4 and genus 3; and the surface may be recovered from C.*

 290

Example 1 (Lie)

Fix $\alpha \notin \{0, 1\}$. The quadric $z = \alpha x^2 - y^2$ in \mathbb{R}^3 is a double translation surface $C_1+C_2=C_3+C_4$ where

$$
C_1 = \{ (s, 0, \alpha s^2) : s \in \mathbb{R} \};
$$

\n
$$
C_2 = \{ (0, t, -t^2) : t \in \mathbb{R} \};
$$

\n
$$
C_3 = \{ (u, \alpha u, \alpha (1-\alpha)u^2) : u \in \mathbb{R} \};
$$

\n
$$
C_4 = \{ (v, v, (\alpha - 1)v^2) : v \in \mathbb{R} \}.
$$

In this case the curve *C* at infinity is a singular curve of degree four with equation $XY(X-Y)(\alpha X-Y) = 0$.

Example 1 (Lie)

Fix $\alpha \notin \{0, 1\}$. The quadric $z = \alpha x^2 - y^2$ in \mathbb{R}^3 is a double translation surface $C_1+C_2=C_3+C_4$ where

$$
C_1 = \{ (s, 0, \alpha s^2) : s \in \mathbb{R} \};
$$

\n
$$
C_2 = \{ (0, t, -t^2) : t \in \mathbb{R} \};
$$

\n
$$
C_3 = \{ (u, \alpha u, \alpha (1-\alpha)u^2) : u \in \mathbb{R} \};
$$

\n
$$
C_4 = \{ (v, v, (\alpha - 1)v^2) : v \in \mathbb{R} \}.
$$

In this case the curve *C* at infinity is a singular curve of degree four with equation $XY(X-Y)(\alpha X-Y) = 0$.

Example 2 (Lie)

Fix $\alpha \notin \{0, \frac{1}{2}\}$ $\frac{1}{2}$. The transcendental surface

$$
z=(x+1)e^{-2\alpha y}-1+\alpha x(x+2)
$$

in \mathbb{R}^3 is a double translation surface $C_1+C_2=C_3+C_4$ where

$$
C_1 = \{ (s, 0, \alpha s^2 + (2\alpha + 1)s) : s \in \mathbb{R} \};
$$

\n
$$
C_2 = \{ (\frac{1}{2\alpha} (1 - e^{-2\alpha t}), t, \frac{1}{4\alpha} (1 - e^{-4\alpha t})) : t \in \mathbb{R} \};
$$

\n
$$
C_3 = \{ (0, u, e^{-2\alpha u} - 1) : u \in \mathbb{R} \};
$$

\n
$$
C_4 = \{ (v, \frac{1}{2\alpha} \ln(1+v), \alpha v(v+2)) : v > -1 \}.
$$

In this case the curve *C* at infinity is a singular curve of degree four with equation $XY(X^2 - YZ) = 0$.

Example 2 (Lie)

Fix $\alpha \notin \{0, \frac{1}{2}\}$ $\frac{1}{2}$. The transcendental surface

$$
z=(x+1)e^{-2\alpha y}-1+\alpha x(x+2)
$$

in \mathbb{R}^3 is a double translation surface $C_1+C_2=C_3+C_4$ where

$$
C_1 = \{ (s, 0, \alpha s^2 + (2\alpha + 1)s) : s \in \mathbb{R} \};
$$

\n
$$
C_2 = \{ (\frac{1}{2\alpha} (1 - e^{-2\alpha t}), t, \frac{1}{4\alpha} (1 - e^{-4\alpha t})) : t \in \mathbb{R} \};
$$

\n
$$
C_3 = \{ (0, u, e^{-2\alpha u} - 1) : u \in \mathbb{R} \};
$$

\n
$$
C_4 = \{ (v, \frac{1}{2\alpha} \ln(1+v), \alpha v(v+2)) : v > -1 \}.
$$

In this case the curve *C* at infinity is a singular curve of degree f our with equation $XY(X^2-YZ)=0.$

A (2-dimensional) *k-*web has point set $\mathcal{W}\subset\mathbb{R}^2,$ an open neighbourhood of **0**. It has *k* smooth coordinate functions $x_1, x_2, \ldots, x_k : \mathcal{W} \to \mathbb{R}$ such that for all $i \neq j$, ∇x_i and ∇x_i are linearly independent throughout W ; also $x_i(\mathbf{0}) = 0$.

The level curves for x_1, x_2, \ldots, x_k intersect transversely, forming the 'lines' of the web.

Point *P* ∈ W has *k* coordinates $x_1(P), x_2(P), \ldots, x_k(P)$, any two of which uniquely determine the point *P*.

K ロメ K 御 メ K 君 メ K 君 X

A (2-dimensional) *k-*web has point set $\mathcal{W}\subset\mathbb{R}^2,$ an open neighbourhood of **0**. It has *k* smooth coordinate functions $x_1, x_2, \ldots, x_k : \mathcal{W} \to \mathbb{R}$ such that for all $i \neq j$, ∇x_i and ∇x_i are linearly independent throughout W ; also $x_i(0) = 0$.

The level curves for x_1, x_2, \ldots, x_k intersect transversely, forming the 'lines' of the web.

Point *P* ∈ W has *k* coordinates $x_1(P), x_2(P), \ldots, x_k(P)$, any two of which uniquely determine the point *P*.

≮ロト ⊀ 何 ト ⊀ ヨ ト ⊀ ヨ ト

A (2-dimensional) *k-*web has point set $\mathcal{W}\subset\mathbb{R}^2,$ an open neighbourhood of **0**. It has *k* smooth coordinate functions $x_1, x_2, \ldots, x_k : \mathcal{W} \to \mathbb{R}$ such that for all $i \neq j$, ∇x_i and ∇x_i are linearly independent throughout W ; also $x_i(0) = 0$.

The level curves for x_1, x_2, \ldots, x_k intersect transversely, forming the 'lines' of the web.

Point *P* ∈ W has *k* coordinates $x_1(P), x_2(P), \ldots, x_k(P)$, any two of which uniquely determine the point *P*.

≮ロト ⊀ 何 ト ⊀ ヨ ト ⊀ ヨ ト

A (2-dimensional) *k-*web has point set $\mathcal{W}\subset\mathbb{R}^2,$ an open neighbourhood of **0**. It has *k* smooth coordinate functions $x_1, x_2, \ldots, x_k : \mathcal{W} \to \mathbb{R}$ such that for all $i \neq j$, ∇x_i and ∇x_i are linearly independent throughout W ; also $x_i(0) = 0$.

The level curves for x_1, x_2, \ldots, x_k intersect transversely, forming the 'lines' of the web.

Point *P* ∈ W has *k* coordinates $x_1(P), x_2(P), \ldots, x_k(P)$, any two of which uniquely determine the point *P*.

≮ロト ⊀ 何 ト ⊀ ヨ ト ⊀ ヨ ト

A (2-dimensional) *k*-web has point set $\mathcal{W}\subset\mathbb{R}^2,$ an open neighbourhood of **0**. It has *k* smooth coordinate functions $x_1, x_2, \ldots, x_k : \mathcal{W} \to \mathbb{R}$ such that for all $i \neq j$, ∇x_i and ∇x_i are linearly independent throughout W ; also $x_i(0) = 0$.

Consider the vector space V consisting of all *k*-tuples (f_1, f_2, \ldots, f_k) of smooth functions $f_i: \mathbb{R} \to \mathbb{R}$ such that $f_i(0) = 0$ and $f_1(x_1(P)) + \cdots + f_k(x_k(P)) = 0$ for all $P \in \mathcal{W}$.

The rank of $\mathcal W$ is dim $\mathcal V\leqslant\frac{1}{2}$ 2 (*k*−1)(*k*−2).

Equality is attained for algebraic *k*-webs obtained from extremal (i.e. maximal genus) plane curves of degree k . For $k \geq 5$, other examples are known. **K ロ ト K 何 ト K ヨ ト K ヨ**

A (2-dimensional) *k*-web has point set $\mathcal{W}\subset\mathbb{R}^2,$ an open neighbourhood of **0**. It has *k* smooth coordinate functions $x_1, x_2, \ldots, x_k : \mathcal{W} \to \mathbb{R}$ such that for all $i \neq j$, ∇x_i and ∇x_i are linearly independent throughout W ; also $x_i(0) = 0$.

Consider the vector space V consisting of all *k*-tuples (f_1, f_2, \ldots, f_k) of smooth functions $f_i: \mathbb{R} \to \mathbb{R}$ such that $f_i(0) = 0$ and $f_1(x_1(P)) + \cdots + f_k(x_k(P)) = 0$ for all $P \in \mathcal{W}$.

The rank of $\mathcal W$ is dim $\mathcal V\leqslant\frac{1}{2}$ 2 (*k*−1)(*k*−2).

≮ロト ⊀ 何 ト ⊀ ヨ ト ⊀ ヨ ト

Equality is attained for algebraic *k*-webs obtained from extremal (i.e. maximal genus) plane curves of degree *k*. For $k \ge 5$, other examples are known.

A (2-dimensional) *k*-web has point set $\mathcal{W}\subset\mathbb{R}^2,$ an open neighbourhood of **0**. It has *k* smooth coordinate functions $x_1, x_2, \ldots, x_k : \mathcal{W} \to \mathbb{R}$ such that for all $i \neq j$, ∇x_i and ∇x_i are linearly independent throughout W ; also $x_i(0) = 0$.

Consider the vector space V consisting of all *k*-tuples (f_1, f_2, \ldots, f_k) of smooth functions $f_i: \mathbb{R} \to \mathbb{R}$ such that $f_i(0) = 0$ and $f_1(x_1(P)) + \cdots + f_k(x_k(P)) = 0$ for all $P \in \mathcal{W}$.

The rank of $\mathcal W$ is dim $\mathcal V\leqslant\frac{1}{2}$ 2 (*k*−1)(*k*−2).

Equality is attained for algebraic *k*-webs obtained from extremal (i.e. maximal genus) **plane curves of degree** *k*. For $k \ge 5$, other examples are known. **K ロメ K 御 メ K 君 メ K 君 X**

 Ω

A (2-dimensional) *k*-web has point set $\mathcal{W}\subset\mathbb{R}^2,$ an open neighbourhood of **0**. It has *k* smooth coordinate functions $x_1, x_2, \ldots, x_k : \mathcal{W} \to \mathbb{R}$ such that for all $i \neq j$, ∇x_i and ∇x_i are linearly independent throughout W ; also $x_i(0) = 0$.

Consider the vector space V consisting of all *k*-tuples (f_1, f_2, \ldots, f_k) of smooth functions $f_i: \mathbb{R} \to \mathbb{R}$ such that $f_i(0) = 0$ and $f_1(x_1(P)) + \cdots + f_k(x_k(P)) = 0$ for all $P \in \mathcal{W}$.

The rank of $\mathcal W$ is dim $\mathcal V\leqslant\frac{1}{2}$ 2 (*k*−1)(*k*−2).

Equality is attained for algebraic *k*-webs obtained from extremal (i.e. maximal genus) plane curves of degree *k*. For $k \ge 5$, other examples are known.

 Ω