Projective Planes of Order 49 Related to t94


I am currently compiling a list of known projective planes of order 49. As part of this enumeration, here are listed the plane t94 and all known planes of order 49 obtained from it by dualizing and deriving. Coming soon: also planes related by the method of lifting quotients. This list is currently incomplete; check back later for a complete enumeration.

Following the table is a key to the table.


Known Projective Planes of Order 49 Related to t94

Entry Plane |Autgp| Point Orbits Line Orbits 7-rank
1 Translation Plane t94, dual dt94 57624 12,28,48,2401 1,492,988,1968 941
2 t94_0_0, dt94_0_0 2058 1,756,2058 18,42,4949 987
3 t94_0_1, dt94_0_1 2058 1,756,2058 18,42,4949 987
4 t94_0_2, dt94_0_2 2058 1,756,2058 18,42,4949 987
5 t94_0_3, dt94_0_3 2058 1,756,2058 18,42,4949 987
6 t94_0_4, dt94_0_4 2058 1,756,2058 18,42,4949 987
7 t94_0_5, dt94_0_5 2058 1,756,2058 18,42,4949 987
8 t94_0_6, dt94_0_6 2058 1,756,2058 18,42,4949 987
9 t94_0_7, dt94_0_7 2058 1,756,2058 18,42,4949 987
10 t94_1_0, dt94_1_0 2058 1,756,2058 18,42,4949 987
11 t94_1_1, dt94_1_1 2058 1,756,2058 18,42,4949 987
12 t94_1_2, dt94_1_2 2058 1,756,2058 18,42,4949 987
13 t94_1_3, dt94_1_3 2058 1,756,2058 18,42,4949 987
14 t94_1_4, dt94_1_4 2058 1,756,2058 18,42,4949 987
15 t94_1_5, dt94_1_5 2058 1,756,2058 18,42,4949 987
16 t94_1_6, dt94_1_6 2058 1,756,2058 18,42,4949 987
17 t94_1_7, dt94_1_7 2058 1,756,2058 18,42,4949 987
18 t94_2_0, dt94_2_0 2058 1,756,2058 18,42,4949 987
19 t94_2_1, dt94_2_1 2058 1,756,2058 18,42,4949 987
20 t94_2_2, dt94_2_2 2058 1,756,2058 18,42,4949 987
21 t94_2_3, dt94_2_3 2058 1,756,2058 18,42,4949 987
22 t94_2_4, dt94_2_4 2058 1,756,2058 18,42,4949 987
23 t94_2_5, dt94_2_5 2058 1,756,2058 18,42,4949 987
24 t94_2_6, dt94_2_6 2058 1,756,2058 18,42,4949 987
25 t94_2_7, dt94_2_7 2058 1,756,2058 18,42,4949 987
26 t94_3_0, dt94_3_0 2058 1,756,2058 18,42,4949 987
27 t94_3_1, dt94_3_1 2058 1,756,2058 18,42,4949 987
28 t94_3_2, dt94_3_2 2058 1,756,2058 18,42,4949 987
29 t94_3_3, dt94_3_3 2058 1,756,2058 18,42,4949 987
30 t94_3_4, dt94_3_4 2058 1,756,2058 18,42,4949 987
31 t94_3_5, dt94_3_5 2058 1,756,2058 18,42,4949 987
32 t94_3_6, dt94_3_6 2058 1,756,2058 18,42,4949 987
33 t94_3_7, dt94_3_7 2058 1,756,2058 18,42,4949 987
34 t94_4_0, dt94_4_0 2058 1,756,2058 18,42,4949 987
35 t94_4_1, dt94_4_1 2058 1,756,2058 18,42,4949 987
36 t94_4_2, dt94_4_2 2058 1,756,2058 18,42,4949 987
37 t94_4_3, dt94_4_3 2058 1,756,2058 18,42,4949 987
38 t94_4_4, dt94_4_4 2058 1,756,2058 18,42,4949 987
39 t94_4_5, dt94_4_5 2058 1,756,2058 18,42,4949 987
40 t94_4_6, dt94_4_6 2058 1,756,2058 18,42,4949 987
41 t94_4_7, dt94_4_7 2058 1,756,2058 18,42,4949 987
42 t94_5_0, dt94_5_0 2058 1,756,2058 18,42,4949 987
43 t94_5_1, dt94_5_1 2058 1,756,2058 18,42,4949 987
44 t94_5_2, dt94_5_2 2058 1,756,2058 18,42,4949 987
45 t94_5_3, dt94_5_3 2058 1,756,2058 18,42,4949 987
46 t94_5_4, dt94_5_4 2058 1,756,2058 18,42,4949 987
47 t94_5_5, dt94_5_5 2058 1,756,2058 18,42,4949 987
48 t94_5_6, dt94_5_6 2058 1,756,2058 18,42,4949 987
49 t94_5_7, dt94_5_7 2058 1,756,2058 18,42,4949 987
50 t94_6_0, dt94_6_0 2058 1,756,2058 18,42,4949 987
51 t94_6_1, dt94_6_1 2058 1,756,2058 18,42,4949 987
52 t94_6_2, dt94_6_2 2058 1,756,2058 18,42,4949 987
53 t94_6_3, dt94_6_3 2058 1,756,2058 18,42,4949 987
54 t94_6_4, dt94_6_4 2058 1,756,2058 18,42,4949 987
55 t94_6_5, dt94_6_5 2058 1,756,2058 18,42,4949 987
56 t94_6_6, dt94_6_6 2058 1,756,2058 18,42,4949 987
57 t94_6_7, dt94_6_7 2058 1,756,2058 18,42,4949 987
58 t94_7_0, dt94_7_0 2058 1,756,2058 18,42,4949 987
59 t94_7_1, dt94_7_1 2058 1,756,2058 18,42,4949 987
60 t94_7_2, dt94_7_2 2058 1,756,2058 18,42,4949 987
61 t94_7_3, dt94_7_3 2058 1,756,2058 18,42,4949 987
62 t94_7_4, dt94_7_4 2058 1,756,2058 18,42,4949 987
63 t94_7_5, dt94_7_5 2058 1,756,2058 18,42,4949 987
64 t94_7_6, dt94_7_6 2058 1,756,2058 18,42,4949 987
65 t94_7_7, dt94_7_7 2058 1,756,2058 18,42,4949 987
66 t94_8_0, dt94_8_0 4116 1,78,1424,2058 12,23,42,497,9821 987
67 t94_8_1, dt94_8_1 2058 1,756,2058 18,42,4949 987
68 t94_8_2, dt94_8_2 2058 1,756,2058 18,42,4949 987
69 t94_8_3, dt94_8_3 4116 1,78,1424,2058 12,23,42,497,9821 987
70 t94_8_4, dt94_8_4 2058 1,756,2058 18,42,4949 987
71 t94_9_0, dt94_9_0 2058 1,756,2058 18,42,4949 987
72 t94_9_1, dt94_9_1 2058 1,756,2058 18,42,4949 987
73 t94_9_2, dt94_9_2 4116 1,78,1424,2058 12,23,42,497,9821 987
74 t94_9_3, dt94_9_3 4116 1,78,1424,2058 12,23,42,497,9821 987
75 t94_9_4, dt94_9_4 2058 1,756,2058 18,42,4949 987
76 t94_10_0, dt94_10_0 2058 1,756,2058 18,42,4949 987
77 t94_10_1, dt94_10_1 2058 1,756,2058 18,42,4949 987
78 t94_10_2, dt94_10_2 4116 1,78,1424,2058 12,23,42,497,9821 987
79 t94_10_3, dt94_10_3 2058 1,756,2058 18,42,4949 987
80 t94_10_4, dt94_10_4 4116 1,78,1424,2058 12,23,42,497,9821 985
81 t94_11_0, dt94_11_0 2058 1,756,2058 18,42,4949 987
82 t94_11_1, dt94_11_1 2058 1,756,2058 18,42,4949 987
83 t94_11_2, dt94_11_2 2058 1,756,2058 18,42,4949 987
84 t94_11_3, dt94_11_3 2058 1,756,2058 18,42,4949 987
85 t94_12_0, dt94_12_0 2058 1,756,2058 18,42,4949 987
86 t94_12_1, dt94_12_1 2058 1,756,2058 18,42,4949 987
87 t94_12_2, dt94_12_2 2058 1,756,2058 18,42,4949 987
88 t94_12_3, dt94_12_3 4116 1,78,1424,2058 12,23,42,497,9821 985
89 t94_12_4, dt94_12_4 4116 1,78,1424,2058 12,23,42,497,9821 987
90 t94_13_0, dt94_13_0 2058 1,756,2058 18,42,4949 987
91 t94_13_1, dt94_13_1 2058 1,756,2058 18,42,4949 987
92 t94_13_2, dt94_13_2 4116 1,78,1424,2058 12,23,42,497,9821 987
93 t94_13_3, dt94_13_3 4116 1,78,1424,2058 12,23,42,497,9821 985
94 t94_13_4, dt94_13_4 2058 1,756,2058 18,42,4949 987
95 t94_14_0, dt94_14_0 2058 1,756,2058 18,42,4949 987
96 t94_14_1, dt94_14_1 2058 1,756,2058 18,42,4949 987
97 t94_14_2, dt94_14_2 2058 1,756,2058 18,42,4949 987
98 t94_14_3, dt94_14_3 2058 1,756,2058 18,42,4949 987
99 t94_15_0, dt94_15_0 2058 1,756,2058 18,42,4949 987
100 t94_15_1, dt94_15_1 4116 1,78,1424,2058 12,23,42,497,9821 987
101 t94_15_2, dt94_15_2 4116 1,78,1424,2058 12,23,42,497,9821 985
102 t94_15_3, dt94_15_3 2058 1,756,2058 18,42,4949 987
103 t94_15_4, dt94_15_4 2058 1,756,2058 18,42,4949 987
104 t94_16_0, dt94_16_0 4116 1,78,1424,2058 12,23,42,497,9821 987
105 t94_16_1, dt94_16_1 4116 1,78,1424,2058 12,23,42,497,9821 987
106 t94_16_2, dt94_16_2 2058 1,756,2058 18,42,4949 987
107 t94_17_0, dt94_17_0 2058 1,756,2058 18,42,4949 987
108 t94_17_1, dt94_17_1 4116 1,78,1424,2058 12,23,42,497,9821 987
109 t94_17_2, dt94_17_2 4116 1,78,1424,2058 12,23,42,497,9821 987

Key to the table

Only one line is displayed for both a plane and its dual, an asterisk (*) in the first column indicating that the plane is self-dual. Each line includes the following information and isomorphism invariants for each plane.


/ revised February, 2011