Projective Planes of Order 49 Related to t93


I am currently compiling a list of known projective planes of order 49. As part of this enumeration, here are listed the plane t93 and all known planes of order 49 obtained from it by dualizing and deriving. Coming soon: also planes related by the method of lifting quotients. This list is currently incomplete; check back later for a complete enumeration.

Following the table is a key to the table.


Known Projective Planes of Order 49 Related to t93

Entry Plane |Autgp| Point Orbits Line Orbits 7-rank
1 Translation Plane t93, dual dt93 57624 27,49,2401 1,987,1969 941
2 t93_0_0, dt93_0_0 2058 1,756,2058 18,42,4949 987
3 t93_0_1, dt93_0_1 2058 1,756,2058 18,42,4949 987
4 t93_0_2, dt93_0_2 2058 1,756,2058 18,42,4949 987
5 t93_0_3, dt93_0_3 2058 1,756,2058 18,42,4949 987
6 t93_0_4, dt93_0_4 2058 1,756,2058 18,42,4949 987
7 t93_0_5, dt93_0_5 2058 1,756,2058 18,42,4949 987
8 t93_0_6, dt93_0_6 2058 1,756,2058 18,42,4949 987
9 t93_0_7, dt93_0_7 2058 1,756,2058 18,42,4949 987
10 t93_1_0, dt93_1_0 2058 1,756,2058 18,42,4949 987
11 t93_1_1, dt93_1_1 2058 1,756,2058 18,42,4949 987
12 t93_1_2, dt93_1_2 2058 1,756,2058 18,42,4949 987
13 t93_1_3, dt93_1_3 2058 1,756,2058 18,42,4949 987
14 t93_1_4, dt93_1_4 2058 1,756,2058 18,42,4949 987
15 t93_1_5, dt93_1_5 2058 1,756,2058 18,42,4949 987
16 t93_1_6, dt93_1_6 2058 1,756,2058 18,42,4949 987
17 t93_1_7, dt93_1_7 2058 1,756,2058 18,42,4949 987
18 t93_2_0, dt93_2_0 2058 1,756,2058 18,42,4949 987
19 t93_2_1, dt93_2_1 2058 1,756,2058 18,42,4949 987
20 t93_2_2, dt93_2_2 2058 1,756,2058 18,42,4949 987
21 t93_2_3, dt93_2_3 2058 1,756,2058 18,42,4949 987
22 t93_2_4, dt93_2_4 2058 1,756,2058 18,42,4949 987
23 t93_2_5, dt93_2_5 2058 1,756,2058 18,42,4949 987
24 t93_2_6, dt93_2_6 2058 1,756,2058 18,42,4949 987
25 t93_2_7, dt93_2_7 2058 1,756,2058 18,42,4949 987
26 t93_3_0, dt93_3_0 2058 1,756,2058 18,42,4949 987
27 t93_3_1, dt93_3_1 2058 1,756,2058 18,42,4949 987
28 t93_3_2, dt93_3_2 2058 1,756,2058 18,42,4949 987
29 t93_3_3, dt93_3_3 2058 1,756,2058 18,42,4949 987
30 t93_3_4, dt93_3_4 2058 1,756,2058 18,42,4949 987
31 t93_3_5, dt93_3_5 2058 1,756,2058 18,42,4949 987
32 t93_3_6, dt93_3_6 2058 1,756,2058 18,42,4949 987
33 t93_3_7, dt93_3_7 2058 1,756,2058 18,42,4949 987
34 t93_4_0, dt93_4_0 2058 1,756,2058 18,42,4949 987
35 t93_4_1, dt93_4_1 2058 1,756,2058 18,42,4949 987
36 t93_4_2, dt93_4_2 2058 1,756,2058 18,42,4949 987
37 t93_4_3, dt93_4_3 2058 1,756,2058 18,42,4949 987
38 t93_4_4, dt93_4_4 2058 1,756,2058 18,42,4949 987
39 t93_4_5, dt93_4_5 2058 1,756,2058 18,42,4949 987
40 t93_4_6, dt93_4_6 2058 1,756,2058 18,42,4949 987
41 t93_4_7, dt93_4_7 2058 1,756,2058 18,42,4949 987
42 t93_5_0, dt93_5_0 2058 1,756,2058 18,42,4949 987
43 t93_5_1, dt93_5_1 2058 1,756,2058 18,42,4949 987
44 t93_5_2, dt93_5_2 2058 1,756,2058 18,42,4949 987
45 t93_5_3, dt93_5_3 2058 1,756,2058 18,42,4949 987
46 t93_5_4, dt93_5_4 2058 1,756,2058 18,42,4949 987
47 t93_5_5, dt93_5_5 2058 1,756,2058 18,42,4949 987
48 t93_5_6, dt93_5_6 2058 1,756,2058 18,42,4949 987
49 t93_5_7, dt93_5_7 2058 1,756,2058 18,42,4949 987
50 t93_6_0, dt93_6_0 2058 1,756,2058 18,42,4949 987
51 t93_6_1, dt93_6_1 2058 1,756,2058 18,42,4949 987
52 t93_6_2, dt93_6_2 2058 1,756,2058 18,42,4949 987
53 t93_6_3, dt93_6_3 2058 1,756,2058 18,42,4949 987
54 t93_6_4, dt93_6_4 2058 1,756,2058 18,42,4949 987
55 t93_6_5, dt93_6_5 2058 1,756,2058 18,42,4949 987
56 t93_6_6, dt93_6_6 2058 1,756,2058 18,42,4949 987
57 t93_6_7, dt93_6_7 2058 1,756,2058 18,42,4949 987
58 t93_7_0, dt93_7_0 2058 1,756,2058 18,42,4949 987
59 t93_7_1, dt93_7_1 2058 1,756,2058 18,42,4949 987
60 t93_7_2, dt93_7_2 2058 1,756,2058 18,42,4949 987
61 t93_7_3, dt93_7_3 2058 1,756,2058 18,42,4949 987
62 t93_7_4, dt93_7_4 2058 1,756,2058 18,42,4949 987
63 t93_7_5, dt93_7_5 2058 1,756,2058 18,42,4949 987
64 t93_7_6, dt93_7_6 2058 1,756,2058 18,42,4949 987
65 t93_7_7, dt93_7_7 2058 1,756,2058 18,42,4949 987
66 t93_8_0, dt93_8_0 2058 1,756,2058 18,42,4949 987
67 t93_8_1, dt93_8_1 2058 1,756,2058 18,42,4949 987
68 t93_8_2, dt93_8_2 2058 1,756,2058 18,42,4949 987
69 t93_8_3, dt93_8_3 2058 1,756,2058 18,42,4949 987
70 t93_8_4, dt93_8_4 2058 1,756,2058 18,42,4949 987
71 t93_8_5, dt93_8_5 2058 1,756,2058 18,42,4949 987
72 t93_8_6, dt93_8_6 2058 1,756,2058 18,42,4949 987
73 t93_8_7, dt93_8_7 2058 1,756,2058 18,42,4949 987
74 t93_9_0, dt93_9_0 2058 1,756,2058 18,42,4949 987
75 t93_9_1, dt93_9_1 2058 1,756,2058 18,42,4949 987
76 t93_9_2, dt93_9_2 2058 1,756,2058 18,42,4949 987
77 t93_9_3, dt93_9_3 2058 1,756,2058 18,42,4949 987
78 t93_10_0, dt93_10_0 2058 1,756,2058 18,42,4949 987
79 t93_10_1, dt93_10_1 2058 1,756,2058 18,42,4949 987
80 t93_10_2, dt93_10_2 2058 1,756,2058 18,42,4949 987
81 t93_10_3, dt93_10_3 2058 1,756,2058 18,42,4949 987
82 t93_11_0, dt93_11_0 2058 1,756,2058 18,42,4949 987
83 t93_11_1, dt93_11_1 2058 1,756,2058 18,42,4949 987
84 t93_11_2, dt93_11_2 2058 1,756,2058 18,42,4949 987
85 t93_11_3, dt93_11_3 2058 1,756,2058 18,42,4949 987
86 t93_12_0, dt93_12_0 2058 1,756,2058 18,42,4949 987
87 t93_12_1, dt93_12_1 2058 1,756,2058 18,42,4949 987
88 t93_12_2, dt93_12_2 2058 1,756,2058 18,42,4949 987
89 t93_12_3, dt93_12_3 2058 1,756,2058 18,42,4949 987
90 t93_13_0, dt93_13_0 2058 1,756,2058 18,42,4949 987
91 t93_13_1, dt93_13_1 2058 1,756,2058 18,42,4949 987
92 t93_13_2, dt93_13_2 2058 1,756,2058 18,42,4949 987
93 t93_13_3, dt93_13_3 2058 1,756,2058 18,42,4949 987
94 t93_14_0, dt93_14_0 2058 1,756,2058 18,42,4949 987
95 t93_14_1, dt93_14_1 2058 1,756,2058 18,42,4949 987
96 t93_14_2, dt93_14_2 2058 1,756,2058 18,42,4949 987
97 t93_14_3, dt93_14_3 2058 1,756,2058 18,42,4949 987
98 t93_15_0, dt93_15_0 2058 1,756,2058 18,42,4949 987
99 t93_15_1, dt93_15_1 2058 1,756,2058 18,42,4949 987
100 t93_15_2, dt93_15_2 2058 1,756,2058 18,42,4949 987
101 t93_15_3, dt93_15_3 2058 1,756,2058 18,42,4949 987

Key to the table

Only one line is displayed for both a plane and its dual, an asterisk (*) in the first column indicating that the plane is self-dual. Each line includes the following information and isomorphism invariants for each plane.


/ revised February, 2011