Projective Planes of Order 49 Related to t92


I am currently compiling a list of known projective planes of order 49. As part of this enumeration, here are listed the plane t92 and all known planes of order 49 obtained from it by dualizing and deriving. Coming soon: also planes related by the method of lifting quotients. This list is currently incomplete; check back later for a complete enumeration.

Following the table is a key to the table.


Known Projective Planes of Order 49 Related to t92

Entry Plane |Autgp| Point Orbits Line Orbits 7-rank
1 Translation Plane t92, dual dt92 57624 14,29,47,2401 1,494,989,1967 941
2 t92_0_0, dt92_0_0 2058 1,756,2058 18,42,4949 987
3 t92_0_1, dt92_0_1 2058 1,756,2058 18,42,4949 987
4 t92_0_2, dt92_0_2 2058 1,756,2058 18,42,4949 987
5 t92_0_3, dt92_0_3 2058 1,756,2058 18,42,4949 987
6 t92_0_4, dt92_0_4 2058 1,756,2058 18,42,4949 987
7 t92_0_5, dt92_0_5 2058 1,756,2058 18,42,4949 987
8 t92_0_6, dt92_0_6 2058 1,756,2058 18,42,4949 987
9 t92_0_7, dt92_0_7 2058 1,756,2058 18,42,4949 987
10 t92_1_0, dt92_1_0 2058 1,756,2058 18,42,4949 987
11 t92_1_1, dt92_1_1 2058 1,756,2058 18,42,4949 987
12 t92_1_2, dt92_1_2 2058 1,756,2058 18,42,4949 987
13 t92_1_3, dt92_1_3 2058 1,756,2058 18,42,4949 987
14 t92_1_4, dt92_1_4 2058 1,756,2058 18,42,4949 987
15 t92_1_5, dt92_1_5 2058 1,756,2058 18,42,4949 987
16 t92_1_6, dt92_1_6 2058 1,756,2058 18,42,4949 987
17 t92_1_7, dt92_1_7 2058 1,756,2058 18,42,4949 987
18 t92_2_0, dt92_2_0 2058 1,756,2058 18,42,4949 987
19 t92_2_1, dt92_2_1 2058 1,756,2058 18,42,4949 987
20 t92_2_2, dt92_2_2 2058 1,756,2058 18,42,4949 987
21 t92_2_3, dt92_2_3 2058 1,756,2058 18,42,4949 987
22 t92_2_4, dt92_2_4 2058 1,756,2058 18,42,4949 987
23 t92_2_5, dt92_2_5 2058 1,756,2058 18,42,4949 987
24 t92_2_6, dt92_2_6 2058 1,756,2058 18,42,4949 987
25 t92_2_7, dt92_2_7 2058 1,756,2058 18,42,4949 987
26 t92_3_0, dt92_3_0 2058 1,756,2058 18,42,4949 987
27 t92_3_1, dt92_3_1 2058 1,756,2058 18,42,4949 987
28 t92_3_2, dt92_3_2 2058 1,756,2058 18,42,4949 987
29 t92_3_3, dt92_3_3 2058 1,756,2058 18,42,4949 987
30 t92_3_4, dt92_3_4 2058 1,756,2058 18,42,4949 987
31 t92_3_5, dt92_3_5 2058 1,756,2058 18,42,4949 987
32 t92_3_6, dt92_3_6 2058 1,756,2058 18,42,4949 987
33 t92_3_7, dt92_3_7 2058 1,756,2058 18,42,4949 987
34 t92_4_0, dt92_4_0 2058 1,756,2058 18,42,4949 987
35 t92_4_1, dt92_4_1 2058 1,756,2058 18,42,4949 987
36 t92_4_2, dt92_4_2 2058 1,756,2058 18,42,4949 987
37 t92_4_3, dt92_4_3 2058 1,756,2058 18,42,4949 987
38 t92_4_4, dt92_4_4 2058 1,756,2058 18,42,4949 987
39 t92_4_5, dt92_4_5 2058 1,756,2058 18,42,4949 987
40 t92_4_6, dt92_4_6 2058 1,756,2058 18,42,4949 987
41 t92_4_7, dt92_4_7 2058 1,756,2058 18,42,4949 987
42 t92_5_0, dt92_5_0 2058 1,756,2058 18,42,4949 987
43 t92_5_1, dt92_5_1 2058 1,756,2058 18,42,4949 987
44 t92_5_2, dt92_5_2 2058 1,756,2058 18,42,4949 987
45 t92_5_3, dt92_5_3 2058 1,756,2058 18,42,4949 987
46 t92_5_4, dt92_5_4 2058 1,756,2058 18,42,4949 987
47 t92_5_5, dt92_5_5 2058 1,756,2058 18,42,4949 987
48 t92_5_6, dt92_5_6 2058 1,756,2058 18,42,4949 987
49 t92_5_7, dt92_5_7 2058 1,756,2058 18,42,4949 987
50 t92_6_0, dt92_6_0 2058 1,756,2058 18,42,4949 987
51 t92_6_1, dt92_6_1 2058 1,756,2058 18,42,4949 987
52 t92_6_2, dt92_6_2 2058 1,756,2058 18,42,4949 987
53 t92_6_3, dt92_6_3 2058 1,756,2058 18,42,4949 987
54 t92_6_4, dt92_6_4 2058 1,756,2058 18,42,4949 987
55 t92_6_5, dt92_6_5 2058 1,756,2058 18,42,4949 987
56 t92_6_6, dt92_6_6 2058 1,756,2058 18,42,4949 987
57 t92_6_7, dt92_6_7 2058 1,756,2058 18,42,4949 987
58 t92_7_0, dt92_7_0 2058 1,756,2058 18,42,4949 987
59 t92_7_1, dt92_7_1 2058 1,756,2058 18,42,4949 987
60 t92_7_2, dt92_7_2 2058 1,756,2058 18,42,4949 987
61 t92_7_3, dt92_7_3 2058 1,756,2058 18,42,4949 987
62 t92_8_0, dt92_8_0 2058 1,756,2058 18,42,4949 987
63 t92_8_1, dt92_8_1 2058 1,756,2058 18,42,4949 987
64 t92_8_2, dt92_8_2 2058 1,756,2058 18,42,4949 987
65 t92_8_3, dt92_8_3 2058 1,756,2058 18,42,4949 987
66 t92_9_0, dt92_9_0 2058 1,756,2058 18,42,4949 987
67 t92_9_1, dt92_9_1 2058 1,756,2058 18,42,4949 987
68 t92_9_2, dt92_9_2 2058 1,756,2058 18,42,4949 987
69 t92_9_3, dt92_9_3 2058 1,756,2058 18,42,4949 987
70 t92_10_0, dt92_10_0 2058 1,756,2058 18,42,4949 987
71 t92_10_1, dt92_10_1 2058 1,756,2058 18,42,4949 987
72 t92_10_2, dt92_10_2 2058 1,756,2058 18,42,4949 987
73 t92_10_3, dt92_10_3 2058 1,756,2058 18,42,4949 987
74 t92_11_0, dt92_11_0 2058 1,756,2058 18,42,4949 987
75 t92_11_1, dt92_11_1 2058 1,756,2058 18,42,4949 987
76 t92_11_2, dt92_11_2 2058 1,756,2058 18,42,4949 987
77 t92_11_3, dt92_11_3 2058 1,756,2058 18,42,4949 987
78 t92_12_0, dt92_12_0 2058 1,756,2058 18,42,4949 987
79 t92_12_1, dt92_12_1 2058 1,756,2058 18,42,4949 987
80 t92_12_2, dt92_12_2 2058 1,756,2058 18,42,4949 987
81 t92_12_3, dt92_12_3 2058 1,756,2058 18,42,4949 987
82 t92_13_0, dt92_13_0 2058 1,756,2058 18,42,4949 987
83 t92_13_1, dt92_13_1 2058 1,756,2058 18,42,4949 987
84 t92_13_2, dt92_13_2 2058 1,756,2058 18,42,4949 987
85 t92_13_3, dt92_13_3 2058 1,756,2058 18,42,4949 987
86 t92_14_0, dt92_14_0 2058 1,756,2058 18,42,4949 987
87 t92_14_1, dt92_14_1 2058 1,756,2058 18,42,4949 987
88 t92_14_2, dt92_14_2 2058 1,756,2058 18,42,4949 987
89 t92_14_3, dt92_14_3 2058 1,756,2058 18,42,4949 987
90 t92_15_0, dt92_15_0 2058 1,756,2058 18,42,4949 987
91 t92_15_1, dt92_15_1 2058 1,756,2058 18,42,4949 987
92 t92_15_2, dt92_15_2 2058 1,756,2058 18,42,4949 987
93 t92_15_3, dt92_15_3 2058 1,756,2058 18,42,4949 987
94 t92_16_0, dt92_16_0 2058 1,756,2058 18,42,4949 987
95 t92_16_1, dt92_16_1 2058 1,756,2058 18,42,4949 987
96 t92_17_0, dt92_17_0 2058 1,756,2058 18,42,4949 987
97 t92_17_1, dt92_17_1 2058 1,756,2058 18,42,4949 987
98 t92_18_0, dt92_18_0 2058 1,756,2058 18,42,4949 987
99 t92_18_1, dt92_18_1 2058 1,756,2058 18,42,4949 987
100 t92_19_0, dt92_19_0 2058 1,756,2058 18,42,4949 987
101 t92_19_1, dt92_19_1 2058 1,756,2058 18,42,4949 987

Key to the table

Only one line is displayed for both a plane and its dual, an asterisk (*) in the first column indicating that the plane is self-dual. Each line includes the following information and isomorphism invariants for each plane.


/ revised February, 2011