Projective Planes of Order 49 Related to t88


I am currently compiling a list of known projective planes of order 49. As part of this enumeration, here are listed the plane t88 and all known planes of order 49 obtained from it by dualizing and deriving. Coming soon: also planes related by the method of lifting quotients. This list is currently incomplete; check back later for a complete enumeration.

Following the table is a key to the table.


Known Projective Planes of Order 49 Related to t88

Entry Plane |Autgp| Point Orbits Line Orbits 7-rank
1 Translation Plane t88, dual dt88 57624 29,48,2401 1,989,1968 941
2 t88_0_0, dt88_0_0 2058 1,756,2058 18,42,4949 987
3 t88_0_1, dt88_0_1 2058 1,756,2058 18,42,4949 987
4 t88_0_2, dt88_0_2 2058 1,756,2058 18,42,4949 987
5 t88_0_3, dt88_0_3 2058 1,756,2058 18,42,4949 987
6 t88_0_4, dt88_0_4 2058 1,756,2058 18,42,4949 987
7 t88_0_5, dt88_0_5 2058 1,756,2058 18,42,4949 987
8 t88_0_6, dt88_0_6 2058 1,756,2058 18,42,4949 987
9 t88_0_7, dt88_0_7 2058 1,756,2058 18,42,4949 987
10 t88_1_0, dt88_1_0 2058 1,756,2058 18,42,4949 987
11 t88_1_1, dt88_1_1 2058 1,756,2058 18,42,4949 987
12 t88_1_2, dt88_1_2 2058 1,756,2058 18,42,4949 987
13 t88_1_3, dt88_1_3 2058 1,756,2058 18,42,4949 987
14 t88_1_4, dt88_1_4 2058 1,756,2058 18,42,4949 987
15 t88_1_5, dt88_1_5 2058 1,756,2058 18,42,4949 987
16 t88_1_6, dt88_1_6 2058 1,756,2058 18,42,4949 987
17 t88_1_7, dt88_1_7 2058 1,756,2058 18,42,4949 987
18 t88_2_0, dt88_2_0 2058 1,756,2058 18,42,4949 987
19 t88_2_1, dt88_2_1 2058 1,756,2058 18,42,4949 987
20 t88_2_2, dt88_2_2 2058 1,756,2058 18,42,4949 987
21 t88_2_3, dt88_2_3 2058 1,756,2058 18,42,4949 987
22 t88_2_4, dt88_2_4 2058 1,756,2058 18,42,4949 987
23 t88_2_5, dt88_2_5 2058 1,756,2058 18,42,4949 987
24 t88_2_6, dt88_2_6 2058 1,756,2058 18,42,4949 987
25 t88_2_7, dt88_2_7 2058 1,756,2058 18,42,4949 987
26 t88_3_0, dt88_3_0 2058 1,756,2058 18,42,4949 987
27 t88_3_1, dt88_3_1 2058 1,756,2058 18,42,4949 987
28 t88_3_2, dt88_3_2 2058 1,756,2058 18,42,4949 987
29 t88_3_3, dt88_3_3 2058 1,756,2058 18,42,4949 987
30 t88_3_4, dt88_3_4 2058 1,756,2058 18,42,4949 987
31 t88_3_5, dt88_3_5 2058 1,756,2058 18,42,4949 987
32 t88_3_6, dt88_3_6 2058 1,756,2058 18,42,4949 987
33 t88_3_7, dt88_3_7 2058 1,756,2058 18,42,4949 987
34 t88_4_0, dt88_4_0 2058 1,756,2058 18,42,4949 987
35 t88_4_1, dt88_4_1 2058 1,756,2058 18,42,4949 987
36 t88_4_2, dt88_4_2 2058 1,756,2058 18,42,4949 987
37 t88_4_3, dt88_4_3 2058 1,756,2058 18,42,4949 987
38 t88_4_4, dt88_4_4 2058 1,756,2058 18,42,4949 987
39 t88_4_5, dt88_4_5 2058 1,756,2058 18,42,4949 987
40 t88_4_6, dt88_4_6 2058 1,756,2058 18,42,4949 987
41 t88_4_7, dt88_4_7 2058 1,756,2058 18,42,4949 987
42 t88_5_0, dt88_5_0 2058 1,756,2058 18,42,4949 987
43 t88_5_1, dt88_5_1 2058 1,756,2058 18,42,4949 987
44 t88_5_2, dt88_5_2 2058 1,756,2058 18,42,4949 987
45 t88_5_3, dt88_5_3 2058 1,756,2058 18,42,4949 987
46 t88_5_4, dt88_5_4 2058 1,756,2058 18,42,4949 987
47 t88_5_5, dt88_5_5 2058 1,756,2058 18,42,4949 987
48 t88_5_6, dt88_5_6 2058 1,756,2058 18,42,4949 987
49 t88_5_7, dt88_5_7 2058 1,756,2058 18,42,4949 987
50 t88_6_0, dt88_6_0 2058 1,756,2058 18,42,4949 987
51 t88_6_1, dt88_6_1 2058 1,756,2058 18,42,4949 987
52 t88_6_2, dt88_6_2 2058 1,756,2058 18,42,4949 987
53 t88_6_3, dt88_6_3 2058 1,756,2058 18,42,4949 987
54 t88_6_4, dt88_6_4 2058 1,756,2058 18,42,4949 987
55 t88_6_5, dt88_6_5 2058 1,756,2058 18,42,4949 987
56 t88_6_6, dt88_6_6 2058 1,756,2058 18,42,4949 987
57 t88_6_7, dt88_6_7 2058 1,756,2058 18,42,4949 987
58 t88_7_0, dt88_7_0 2058 1,756,2058 18,42,4949 987
59 t88_7_1, dt88_7_1 2058 1,756,2058 18,42,4949 987
60 t88_7_2, dt88_7_2 2058 1,756,2058 18,42,4949 987
61 t88_7_3, dt88_7_3 2058 1,756,2058 18,42,4949 987
62 t88_7_4, dt88_7_4 2058 1,756,2058 18,42,4949 987
63 t88_7_5, dt88_7_5 2058 1,756,2058 18,42,4949 987
64 t88_7_6, dt88_7_6 2058 1,756,2058 18,42,4949 987
65 t88_7_7, dt88_7_7 2058 1,756,2058 18,42,4949 987
66 t88_8_0, dt88_8_0 4116 1,78,1424,2058 12,23,42,497,9821 987
67 t88_8_1, dt88_8_1 2058 1,756,2058 18,42,4949 987
68 t88_8_2, dt88_8_2 2058 1,756,2058 18,42,4949 987
69 t88_8_3, dt88_8_3 2058 1,756,2058 18,42,4949 987
70 t88_8_4, dt88_8_4 4116 1,78,1424,2058 12,23,42,497,9821 987
71 t88_9_0, dt88_9_0 2058 1,756,2058 18,42,4949 987
72 t88_9_1, dt88_9_1 2058 1,756,2058 18,42,4949 987
73 t88_9_2, dt88_9_2 2058 1,756,2058 18,42,4949 987
74 t88_9_3, dt88_9_3 4116 1,78,1424,2058 12,23,42,497,9821 987
75 t88_9_4, dt88_9_4 4116 1,78,1424,2058 12,23,42,497,9821 987
76 t88_10_0, dt88_10_0 4116 1,78,1424,2058 12,23,42,497,9821 987
77 t88_10_1, dt88_10_1 2058 1,756,2058 18,42,4949 987
78 t88_10_2, dt88_10_2 2058 1,756,2058 18,42,4949 987
79 t88_10_3, dt88_10_3 2058 1,756,2058 18,42,4949 987
80 t88_10_4, dt88_10_4 4116 1,78,1424,2058 12,23,42,497,9821 987
81 t88_11_0, dt88_11_0 2058 1,756,2058 18,42,4949 987
82 t88_11_1, dt88_11_1 2058 1,756,2058 18,42,4949 987
83 t88_11_2, dt88_11_2 2058 1,756,2058 18,42,4949 987
84 t88_11_3, dt88_11_3 2058 1,756,2058 18,42,4949 987
85 t88_12_0, dt88_12_0 4116 1,78,1424,2058 12,23,42,497,9821 987
86 t88_12_1, dt88_12_1 2058 1,756,2058 18,42,4949 987
87 t88_12_2, dt88_12_2 4116 1,78,1424,2058 12,23,42,497,9821 987
88 t88_12_3, dt88_12_3 2058 1,756,2058 18,42,4949 987
89 t88_12_4, dt88_12_4 2058 1,756,2058 18,42,4949 987
90 t88_13_0, dt88_13_0 2058 1,756,2058 18,42,4949 987
91 t88_13_1, dt88_13_1 2058 1,756,2058 18,42,4949 987
92 t88_13_2, dt88_13_2 2058 1,756,2058 18,42,4949 987
93 t88_13_3, dt88_13_3 2058 1,756,2058 18,42,4949 987
94 t88_14_0, dt88_14_0 2058 1,756,2058 18,42,4949 987
95 t88_14_1, dt88_14_1 2058 1,756,2058 18,42,4949 987
96 t88_14_2, dt88_14_2 2058 1,756,2058 18,42,4949 987
97 t88_14_3, dt88_14_3 2058 1,756,2058 18,42,4949 987
98 t88_15_0, dt88_15_0 2058 1,756,2058 18,42,4949 987
99 t88_15_1, dt88_15_1 2058 1,756,2058 18,42,4949 987
100 t88_15_2, dt88_15_2 2058 1,756,2058 18,42,4949 987
101 t88_15_3, dt88_15_3 2058 1,756,2058 18,42,4949 987
102 t88_16_0, dt88_16_0 2058 1,756,2058 18,42,4949 987
103 t88_16_1, dt88_16_1 2058 1,756,2058 18,42,4949 987
104 t88_16_2, dt88_16_2 2058 1,756,2058 18,42,4949 987
105 t88_16_3, dt88_16_3 2058 1,756,2058 18,42,4949 987

Key to the table

Only one line is displayed for both a plane and its dual, an asterisk (*) in the first column indicating that the plane is self-dual. Each line includes the following information and isomorphism invariants for each plane.


/ revised February, 2011