Projective Planes of Order 49 Related to t81


I am currently compiling a list of known projective planes of order 49. As part of this enumeration, here are listed the plane t81 and all known planes of order 49 obtained from it by dualizing and deriving. Coming soon: also planes related by the method of lifting quotients. This list is currently incomplete; check back later for a complete enumeration.

Following the table is a key to the table.


Known Projective Planes of Order 49 Related to t81

Entry Plane |Autgp| Point Orbits Line Orbits 7-rank
1 Translation Plane t81, dual dt81 57624 12,28,48,2401 1,492,988,1968 941
2 t81_0_0, dt81_0_0 2058 1,756,2058 18,42,4949 987
3 t81_0_1, dt81_0_1 2058 1,756,2058 18,42,4949 987
4 t81_0_2, dt81_0_2 2058 1,756,2058 18,42,4949 987
5 t81_0_3, dt81_0_3 2058 1,756,2058 18,42,4949 987
6 t81_0_4, dt81_0_4 2058 1,756,2058 18,42,4949 987
7 t81_0_5, dt81_0_5 2058 1,756,2058 18,42,4949 987
8 t81_0_6, dt81_0_6 2058 1,756,2058 18,42,4949 987
9 t81_0_7, dt81_0_7 2058 1,756,2058 18,42,4949 987
10 t81_1_0, dt81_1_0 2058 1,756,2058 18,42,4949 987
11 t81_1_1, dt81_1_1 2058 1,756,2058 18,42,4949 987
12 t81_1_2, dt81_1_2 2058 1,756,2058 18,42,4949 987
13 t81_1_3, dt81_1_3 2058 1,756,2058 18,42,4949 987
14 t81_1_4, dt81_1_4 2058 1,756,2058 18,42,4949 987
15 t81_1_5, dt81_1_5 2058 1,756,2058 18,42,4949 987
16 t81_1_6, dt81_1_6 2058 1,756,2058 18,42,4949 987
17 t81_1_7, dt81_1_7 2058 1,756,2058 18,42,4949 987
18 t81_2_0, dt81_2_0 2058 1,756,2058 18,42,4949 987
19 t81_2_1, dt81_2_1 2058 1,756,2058 18,42,4949 987
20 t81_2_2, dt81_2_2 2058 1,756,2058 18,42,4949 987
21 t81_2_3, dt81_2_3 2058 1,756,2058 18,42,4949 987
22 t81_2_4, dt81_2_4 2058 1,756,2058 18,42,4949 987
23 t81_2_5, dt81_2_5 2058 1,756,2058 18,42,4949 987
24 t81_2_6, dt81_2_6 2058 1,756,2058 18,42,4949 987
25 t81_2_7, dt81_2_7 2058 1,756,2058 18,42,4949 987
26 t81_3_0, dt81_3_0 2058 1,756,2058 18,42,4949 987
27 t81_3_1, dt81_3_1 2058 1,756,2058 18,42,4949 987
28 t81_3_2, dt81_3_2 2058 1,756,2058 18,42,4949 987
29 t81_3_3, dt81_3_3 2058 1,756,2058 18,42,4949 987
30 t81_3_4, dt81_3_4 2058 1,756,2058 18,42,4949 987
31 t81_3_5, dt81_3_5 2058 1,756,2058 18,42,4949 987
32 t81_3_6, dt81_3_6 2058 1,756,2058 18,42,4949 987
33 t81_3_7, dt81_3_7 2058 1,756,2058 18,42,4949 987
34 t81_4_0, dt81_4_0 2058 1,756,2058 18,42,4949 987
35 t81_4_1, dt81_4_1 2058 1,756,2058 18,42,4949 987
36 t81_4_2, dt81_4_2 2058 1,756,2058 18,42,4949 987
37 t81_4_3, dt81_4_3 2058 1,756,2058 18,42,4949 987
38 t81_4_4, dt81_4_4 2058 1,756,2058 18,42,4949 987
39 t81_4_5, dt81_4_5 2058 1,756,2058 18,42,4949 985
40 t81_4_6, dt81_4_6 2058 1,756,2058 18,42,4949 987
41 t81_4_7, dt81_4_7 2058 1,756,2058 18,42,4949 987
42 t81_5_0, dt81_5_0 2058 1,756,2058 18,42,4949 987
43 t81_5_1, dt81_5_1 2058 1,756,2058 18,42,4949 987
44 t81_5_2, dt81_5_2 2058 1,756,2058 18,42,4949 985
45 t81_5_3, dt81_5_3 2058 1,756,2058 18,42,4949 987
46 t81_5_4, dt81_5_4 2058 1,756,2058 18,42,4949 987
47 t81_5_5, dt81_5_5 2058 1,756,2058 18,42,4949 987
48 t81_5_6, dt81_5_6 2058 1,756,2058 18,42,4949 987
49 t81_5_7, dt81_5_7 2058 1,756,2058 18,42,4949 987
50 t81_6_0, dt81_6_0 2058 1,756,2058 18,42,4949 987
51 t81_6_1, dt81_6_1 2058 1,756,2058 18,42,4949 987
52 t81_6_2, dt81_6_2 2058 1,756,2058 18,42,4949 987
53 t81_6_3, dt81_6_3 2058 1,756,2058 18,42,4949 987
54 t81_6_4, dt81_6_4 2058 1,756,2058 18,42,4949 987
55 t81_6_5, dt81_6_5 2058 1,756,2058 18,42,4949 987
56 t81_6_6, dt81_6_6 2058 1,756,2058 18,42,4949 987
57 t81_6_7, dt81_6_7 2058 1,756,2058 18,42,4949 987
58 t81_7_0, dt81_7_0 2058 1,756,2058 18,42,4949 987
59 t81_7_1, dt81_7_1 2058 1,756,2058 18,42,4949 987
60 t81_7_2, dt81_7_2 2058 1,756,2058 18,42,4949 987
61 t81_7_3, dt81_7_3 2058 1,756,2058 18,42,4949 987
62 t81_7_4, dt81_7_4 2058 1,756,2058 18,42,4949 987
63 t81_7_5, dt81_7_5 2058 1,756,2058 18,42,4949 987
64 t81_7_6, dt81_7_6 2058 1,756,2058 18,42,4949 987
65 t81_7_7, dt81_7_7 2058 1,756,2058 18,42,4949 987
66 t81_8_0, dt81_8_0 2058 1,756,2058 18,42,4949 987
67 t81_8_1, dt81_8_1 2058 1,756,2058 18,42,4949 987
68 t81_8_2, dt81_8_2 2058 1,756,2058 18,42,4949 987
69 t81_8_3, dt81_8_3 2058 1,756,2058 18,42,4949 987
70 t81_9_0, dt81_9_0 2058 1,756,2058 18,42,4949 987
71 t81_9_1, dt81_9_1 2058 1,756,2058 18,42,4949 987
72 t81_9_2, dt81_9_2 2058 1,756,2058 18,42,4949 987
73 t81_9_3, dt81_9_3 2058 1,756,2058 18,42,4949 987
74 t81_10_0, dt81_10_0 2058 1,756,2058 18,42,4949 987
75 t81_10_1, dt81_10_1 2058 1,756,2058 18,42,4949 987
76 t81_10_2, dt81_10_2 2058 1,756,2058 18,42,4949 987
77 t81_10_3, dt81_10_3 2058 1,756,2058 18,42,4949 987
78 t81_11_0, dt81_11_0 2058 1,756,2058 18,42,4949 987
79 t81_11_1, dt81_11_1 2058 1,756,2058 18,42,4949 987
80 t81_11_2, dt81_11_2 2058 1,756,2058 18,42,4949 987
81 t81_11_3, dt81_11_3 2058 1,756,2058 18,42,4949 987
82 t81_12_0, dt81_12_0 2058 1,756,2058 18,42,4949 987
83 t81_12_1, dt81_12_1 2058 1,756,2058 18,42,4949 987
84 t81_12_2, dt81_12_2 2058 1,756,2058 18,42,4949 987
85 t81_12_3, dt81_12_3 2058 1,756,2058 18,42,4949 987
86 t81_13_0, dt81_13_0 2058 1,756,2058 18,42,4949 987
87 t81_13_1, dt81_13_1 2058 1,756,2058 18,42,4949 987
88 t81_13_2, dt81_13_2 2058 1,756,2058 18,42,4949 987
89 t81_13_3, dt81_13_3 2058 1,756,2058 18,42,4949 987
90 t81_14_0, dt81_14_0 2058 1,756,2058 18,42,4949 987
91 t81_14_1, dt81_14_1 2058 1,756,2058 18,42,4949 987
92 t81_14_2, dt81_14_2 2058 1,756,2058 18,42,4949 987
93 t81_14_3, dt81_14_3 2058 1,756,2058 18,42,4949 987
94 t81_15_0, dt81_15_0 2058 1,756,2058 18,42,4949 987
95 t81_15_1, dt81_15_1 2058 1,756,2058 18,42,4949 987
96 t81_15_2, dt81_15_2 2058 1,756,2058 18,42,4949 987
97 t81_15_3, dt81_15_3 2058 1,756,2058 18,42,4949 987
98 t81_16_0, dt81_16_0 2058 1,756,2058 18,42,4949 987
99 t81_16_1, dt81_16_1 2058 1,756,2058 18,42,4949 987
100 t81_17_0, dt81_17_0 2058 1,756,2058 18,42,4949 987
101 t81_17_1, dt81_17_1 2058 1,756,2058 18,42,4949 987

Key to the table

Only one line is displayed for both a plane and its dual, an asterisk (*) in the first column indicating that the plane is self-dual. Each line includes the following information and isomorphism invariants for each plane.


/ revised February, 2011