Projective Planes of Order 49 Related to t80


I am currently compiling a list of known projective planes of order 49. As part of this enumeration, here are listed the plane t80 and all known planes of order 49 obtained from it by dualizing and deriving. Coming soon: also planes related by the method of lifting quotients. This list is currently incomplete; check back later for a complete enumeration.

Following the table is a key to the table.


Known Projective Planes of Order 49 Related to t80

Entry Plane |Autgp| Point Orbits Line Orbits 7-rank
1 Translation Plane t80, dual dt80 115248 14,25,45,82,2401 1,494,985,1965,3922 939
2 t80_0_0, dt80_0_0 2058 1,756,2058 18,42,4949 987
3 t80_0_1, dt80_0_1 2058 1,756,2058 18,42,4949 987
4 t80_0_2, dt80_0_2 2058 1,756,2058 18,42,4949 987
5 t80_0_3, dt80_0_3 2058 1,756,2058 18,42,4949 987
6 t80_0_4, dt80_0_4 2058 1,756,2058 18,42,4949 987
7 t80_0_5, dt80_0_5 2058 1,756,2058 18,42,4949 987
8 t80_0_6, dt80_0_6 2058 1,756,2058 18,42,4949 987
9 t80_0_7, dt80_0_7 2058 1,756,2058 18,42,4949 987
10 t80_1_0, dt80_1_0 2058 1,756,2058 18,42,4949 987
11 t80_1_1, dt80_1_1 2058 1,756,2058 18,42,4949 987
12 t80_1_2, dt80_1_2 2058 1,756,2058 18,42,4949 987
13 t80_1_3, dt80_1_3 2058 1,756,2058 18,42,4949 987
14 t80_1_4, dt80_1_4 2058 1,756,2058 18,42,4949 987
15 t80_1_5, dt80_1_5 2058 1,756,2058 18,42,4949 987
16 t80_1_6, dt80_1_6 2058 1,756,2058 18,42,4949 987
17 t80_1_7, dt80_1_7 2058 1,756,2058 18,42,4949 987
18 t80_2_0, dt80_2_0 2058 1,756,2058 18,42,4949 987
19 t80_2_1, dt80_2_1 2058 1,756,2058 18,42,4949 987
20 t80_2_2, dt80_2_2 2058 1,756,2058 18,42,4949 987
21 t80_2_3, dt80_2_3 2058 1,756,2058 18,42,4949 987
22 t80_3_0, dt80_3_0 2058 1,756,2058 18,42,4949 987
23 t80_3_1, dt80_3_1 2058 1,756,2058 18,42,4949 987
24 t80_3_2, dt80_3_2 2058 1,756,2058 18,42,4949 987
25 t80_3_3, dt80_3_3 2058 1,756,2058 18,42,4949 987
26 t80_4_0, dt80_4_0 2058 1,756,2058 18,42,4949 987
27 t80_4_1, dt80_4_1 2058 1,756,2058 18,42,4949 987
28 t80_4_2, dt80_4_2 2058 1,756,2058 18,42,4949 987
29 t80_4_3, dt80_4_3 2058 1,756,2058 18,42,4949 987
30 t80_5_0, dt80_5_0 2058 1,756,2058 18,42,4949 987
31 t80_5_1, dt80_5_1 2058 1,756,2058 18,42,4949 987
32 t80_5_2, dt80_5_2 2058 1,756,2058 18,42,4949 987
33 t80_5_3, dt80_5_3 2058 1,756,2058 18,42,4949 987
34 t80_6_0, dt80_6_0 2058 1,756,2058 18,42,4949 987
35 t80_6_1, dt80_6_1 2058 1,756,2058 18,42,4949 987
36 t80_6_2, dt80_6_2 2058 1,756,2058 18,42,4949 987
37 t80_6_3, dt80_6_3 2058 1,756,2058 18,42,4949 987
38 t80_7_0, dt80_7_0 2058 1,756,2058 18,42,4949 987
39 t80_7_1, dt80_7_1 2058 1,756,2058 18,42,4949 987
40 t80_8_0, dt80_8_0 2058 1,756,2058 18,42,4949 987
41 t80_8_1, dt80_8_1 2058 1,756,2058 18,42,4949 987
42 t80_9_0, dt80_9_0 2058 1,756,2058 18,42,4949 987
43 t80_9_1, dt80_9_1 2058 1,756,2058 18,42,4949 987
44 t80_10_0, dt80_10_0 2058 1,756,2058 18,42,4949 987
45 t80_10_1, dt80_10_1 2058 1,756,2058 18,42,4949 987
46 t80_11_0, dt80_11_0 2058 1,756,2058 18,42,4949 987
47 t80_11_1, dt80_11_1 2058 1,756,2058 18,42,4949 987
48 t80_12_0, dt80_12_0 2058 1,756,2058 18,42,4949 987
49 t80_13_0, dt80_13_0 2058 1,756,2058 18,42,4949 987
50 t80_14_0, dt80_14_0 2058 1,756,2058 18,42,4949 987
51 t80_15_0, dt80_15_0 2058 1,756,2058 18,42,4949 987

Key to the table

Only one line is displayed for both a plane and its dual, an asterisk (*) in the first column indicating that the plane is self-dual. Each line includes the following information and isomorphism invariants for each plane.


/ revised February, 2011