Projective Planes of Order 49 Related to t79


I am currently compiling a list of known projective planes of order 49. As part of this enumeration, here are listed the plane t79 and all known planes of order 49 obtained from it by dualizing and deriving. Coming soon: also planes related by the method of lifting quotients. This list is currently incomplete; check back later for a complete enumeration.

Following the table is a key to the table.


Known Projective Planes of Order 49 Related to t79

Entry Plane |Autgp| Point Orbits Line Orbits 7-rank
1 Translation Plane t79, dual dt79 57624 14,27,48,2401 1,494,987,1968 941
2 t79_0_0, dt79_0_0 2058 1,756,2058 18,42,4949 987
3 t79_0_1, dt79_0_1 2058 1,756,2058 18,42,4949 987
4 t79_0_2, dt79_0_2 2058 1,756,2058 18,42,4949 987
5 t79_0_3, dt79_0_3 2058 1,756,2058 18,42,4949 987
6 t79_0_4, dt79_0_4 2058 1,756,2058 18,42,4949 987
7 t79_0_5, dt79_0_5 2058 1,756,2058 18,42,4949 987
8 t79_0_6, dt79_0_6 2058 1,756,2058 18,42,4949 987
9 t79_0_7, dt79_0_7 2058 1,756,2058 18,42,4949 987
10 t79_1_0, dt79_1_0 2058 1,756,2058 18,42,4949 987
11 t79_1_1, dt79_1_1 2058 1,756,2058 18,42,4949 987
12 t79_1_2, dt79_1_2 2058 1,756,2058 18,42,4949 987
13 t79_1_3, dt79_1_3 2058 1,756,2058 18,42,4949 987
14 t79_1_4, dt79_1_4 2058 1,756,2058 18,42,4949 987
15 t79_1_5, dt79_1_5 2058 1,756,2058 18,42,4949 987
16 t79_1_6, dt79_1_6 2058 1,756,2058 18,42,4949 987
17 t79_1_7, dt79_1_7 2058 1,756,2058 18,42,4949 987
18 t79_2_0, dt79_2_0 2058 1,756,2058 18,42,4949 987
19 t79_2_1, dt79_2_1 2058 1,756,2058 18,42,4949 987
20 t79_2_2, dt79_2_2 2058 1,756,2058 18,42,4949 987
21 t79_2_3, dt79_2_3 2058 1,756,2058 18,42,4949 987
22 t79_2_4, dt79_2_4 2058 1,756,2058 18,42,4949 987
23 t79_2_5, dt79_2_5 2058 1,756,2058 18,42,4949 987
24 t79_2_6, dt79_2_6 2058 1,756,2058 18,42,4949 987
25 t79_2_7, dt79_2_7 2058 1,756,2058 18,42,4949 987
26 t79_3_0, dt79_3_0 2058 1,756,2058 18,42,4949 987
27 t79_3_1, dt79_3_1 2058 1,756,2058 18,42,4949 987
28 t79_3_2, dt79_3_2 2058 1,756,2058 18,42,4949 987
29 t79_3_3, dt79_3_3 2058 1,756,2058 18,42,4949 987
30 t79_3_4, dt79_3_4 2058 1,756,2058 18,42,4949 987
31 t79_3_5, dt79_3_5 2058 1,756,2058 18,42,4949 987
32 t79_3_6, dt79_3_6 2058 1,756,2058 18,42,4949 987
33 t79_3_7, dt79_3_7 2058 1,756,2058 18,42,4949 987
34 t79_4_0, dt79_4_0 2058 1,756,2058 18,42,4949 987
35 t79_4_1, dt79_4_1 2058 1,756,2058 18,42,4949 987
36 t79_4_2, dt79_4_2 2058 1,756,2058 18,42,4949 987
37 t79_4_3, dt79_4_3 2058 1,756,2058 18,42,4949 987
38 t79_4_4, dt79_4_4 2058 1,756,2058 18,42,4949 987
39 t79_4_5, dt79_4_5 2058 1,756,2058 18,42,4949 987
40 t79_4_6, dt79_4_6 2058 1,756,2058 18,42,4949 987
41 t79_4_7, dt79_4_7 2058 1,756,2058 18,42,4949 987
42 t79_5_0, dt79_5_0 2058 1,756,2058 18,42,4949 987
43 t79_5_1, dt79_5_1 2058 1,756,2058 18,42,4949 987
44 t79_5_2, dt79_5_2 2058 1,756,2058 18,42,4949 987
45 t79_5_3, dt79_5_3 2058 1,756,2058 18,42,4949 987
46 t79_5_4, dt79_5_4 2058 1,756,2058 18,42,4949 987
47 t79_5_5, dt79_5_5 2058 1,756,2058 18,42,4949 987
48 t79_5_6, dt79_5_6 2058 1,756,2058 18,42,4949 987
49 t79_5_7, dt79_5_7 2058 1,756,2058 18,42,4949 987
50 t79_6_0, dt79_6_0 2058 1,756,2058 18,42,4949 987
51 t79_6_1, dt79_6_1 2058 1,756,2058 18,42,4949 987
52 t79_6_2, dt79_6_2 2058 1,756,2058 18,42,4949 987
53 t79_6_3, dt79_6_3 2058 1,756,2058 18,42,4949 987
54 t79_6_4, dt79_6_4 2058 1,756,2058 18,42,4949 985
55 t79_6_5, dt79_6_5 2058 1,756,2058 18,42,4949 987
56 t79_6_6, dt79_6_6 2058 1,756,2058 18,42,4949 987
57 t79_6_7, dt79_6_7 2058 1,756,2058 18,42,4949 987
58 t79_7_0, dt79_7_0 2058 1,756,2058 18,42,4949 987
59 t79_7_1, dt79_7_1 2058 1,756,2058 18,42,4949 987
60 t79_7_2, dt79_7_2 2058 1,756,2058 18,42,4949 987
61 t79_7_3, dt79_7_3 2058 1,756,2058 18,42,4949 987
62 t79_7_4, dt79_7_4 2058 1,756,2058 18,42,4949 987
63 t79_7_5, dt79_7_5 2058 1,756,2058 18,42,4949 987
64 t79_7_6, dt79_7_6 2058 1,756,2058 18,42,4949 987
65 t79_7_7, dt79_7_7 2058 1,756,2058 18,42,4949 987
66 t79_8_0, dt79_8_0 2058 1,756,2058 18,42,4949 987
67 t79_8_1, dt79_8_1 2058 1,756,2058 18,42,4949 987
68 t79_8_2, dt79_8_2 2058 1,756,2058 18,42,4949 987
69 t79_8_3, dt79_8_3 2058 1,756,2058 18,42,4949 987
70 t79_9_0, dt79_9_0 2058 1,756,2058 18,42,4949 987
71 t79_9_1, dt79_9_1 2058 1,756,2058 18,42,4949 987
72 t79_9_2, dt79_9_2 2058 1,756,2058 18,42,4949 987
73 t79_9_3, dt79_9_3 2058 1,756,2058 18,42,4949 987
74 t79_10_0, dt79_10_0 2058 1,756,2058 18,42,4949 987
75 t79_10_1, dt79_10_1 2058 1,756,2058 18,42,4949 987
76 t79_10_2, dt79_10_2 2058 1,756,2058 18,42,4949 987
77 t79_10_3, dt79_10_3 2058 1,756,2058 18,42,4949 987
78 t79_11_0, dt79_11_0 2058 1,756,2058 18,42,4949 987
79 t79_11_1, dt79_11_1 2058 1,756,2058 18,42,4949 987
80 t79_11_2, dt79_11_2 2058 1,756,2058 18,42,4949 987
81 t79_11_3, dt79_11_3 2058 1,756,2058 18,42,4949 987
82 t79_12_0, dt79_12_0 2058 1,756,2058 18,42,4949 987
83 t79_12_1, dt79_12_1 2058 1,756,2058 18,42,4949 987
84 t79_12_2, dt79_12_2 2058 1,756,2058 18,42,4949 987
85 t79_12_3, dt79_12_3 2058 1,756,2058 18,42,4949 987
86 t79_13_0, dt79_13_0 2058 1,756,2058 18,42,4949 987
87 t79_13_1, dt79_13_1 2058 1,756,2058 18,42,4949 987
88 t79_13_2, dt79_13_2 2058 1,756,2058 18,42,4949 987
89 t79_13_3, dt79_13_3 2058 1,756,2058 18,42,4949 987
90 t79_14_0, dt79_14_0 2058 1,756,2058 18,42,4949 987
91 t79_14_1, dt79_14_1 2058 1,756,2058 18,42,4949 987
92 t79_14_2, dt79_14_2 2058 1,756,2058 18,42,4949 987
93 t79_14_3, dt79_14_3 2058 1,756,2058 18,42,4949 987
94 t79_15_0, dt79_15_0 2058 1,756,2058 18,42,4949 987
95 t79_15_1, dt79_15_1 2058 1,756,2058 18,42,4949 987
96 t79_16_0, dt79_16_0 2058 1,756,2058 18,42,4949 987
97 t79_16_1, dt79_16_1 2058 1,756,2058 18,42,4949 987
98 t79_17_0, dt79_17_0 2058 1,756,2058 18,42,4949 987
99 t79_17_1, dt79_17_1 2058 1,756,2058 18,42,4949 987
100 t79_18_0, dt79_18_0 2058 1,756,2058 18,42,4949 987
101 t79_18_1, dt79_18_1 2058 1,756,2058 18,42,4949 987

Key to the table

Only one line is displayed for both a plane and its dual, an asterisk (*) in the first column indicating that the plane is self-dual. Each line includes the following information and isomorphism invariants for each plane.


/ revised February, 2011