Projective Planes of Order 49 Related to t75


I am currently compiling a list of known projective planes of order 49. As part of this enumeration, here are listed the plane t75 and all known planes of order 49 obtained from it by dualizing and deriving. Coming soon: also planes related by the method of lifting quotients. This list is currently incomplete; check back later for a complete enumeration.

Following the table is a key to the table.


Known Projective Planes of Order 49 Related to t75

Entry Plane |Autgp| Point Orbits Line Orbits 7-rank
1 Translation Plane t75, dual dt75 115248 2,44,84,2401 1,98,1964,3924 937
2 t75_0_0, dt75_0_0 2058 1,756,2058 18,42,4949 987
3 t75_0_1, dt75_0_1 2058 1,756,2058 18,42,4949 987
4 t75_0_2, dt75_0_2 2058 1,756,2058 18,42,4949 987
5 t75_0_3, dt75_0_3 2058 1,756,2058 18,42,4949 987
6 t75_0_4, dt75_0_4 2058 1,756,2058 18,42,4949 987
7 t75_0_5, dt75_0_5 2058 1,756,2058 18,42,4949 987
8 t75_0_6, dt75_0_6 2058 1,756,2058 18,42,4949 987
9 t75_0_7, dt75_0_7 2058 1,756,2058 18,42,4949 987
10 t75_1_0, dt75_1_0 2058 1,756,2058 18,42,4949 987
11 t75_1_1, dt75_1_1 2058 1,756,2058 18,42,4949 987
12 t75_1_2, dt75_1_2 2058 1,756,2058 18,42,4949 987
13 t75_1_3, dt75_1_3 2058 1,756,2058 18,42,4949 987
14 t75_1_4, dt75_1_4 2058 1,756,2058 18,42,4949 987
15 t75_1_5, dt75_1_5 2058 1,756,2058 18,42,4949 987
16 t75_1_6, dt75_1_6 2058 1,756,2058 18,42,4949 987
17 t75_1_7, dt75_1_7 2058 1,756,2058 18,42,4949 987
18 t75_2_0, dt75_2_0 2058 1,756,2058 18,42,4949 987
19 t75_2_1, dt75_2_1 2058 1,756,2058 18,42,4949 987
20 t75_2_2, dt75_2_2 2058 1,756,2058 18,42,4949 987
21 t75_2_3, dt75_2_3 2058 1,756,2058 18,42,4949 987
22 t75_2_4, dt75_2_4 2058 1,756,2058 18,42,4949 987
23 t75_2_5, dt75_2_5 2058 1,756,2058 18,42,4949 987
24 t75_2_6, dt75_2_6 2058 1,756,2058 18,42,4949 987
25 t75_2_7, dt75_2_7 2058 1,756,2058 18,42,4949 987
26 t75_3_0, dt75_3_0 2058 1,756,2058 18,42,4949 987
27 t75_3_1, dt75_3_1 2058 1,756,2058 18,42,4949 987
28 t75_3_2, dt75_3_2 2058 1,756,2058 18,42,4949 987
29 t75_3_3, dt75_3_3 2058 1,756,2058 18,42,4949 987
30 t75_3_4, dt75_3_4 2058 1,756,2058 18,42,4949 987
31 t75_3_5, dt75_3_5 2058 1,756,2058 18,42,4949 987
32 t75_3_6, dt75_3_6 2058 1,756,2058 18,42,4949 987
33 t75_3_7, dt75_3_7 2058 1,756,2058 18,42,4949 987
34 t75_4_0, dt75_4_0 2058 1,756,2058 18,42,4949 987
35 t75_4_1, dt75_4_1 2058 1,756,2058 18,42,4949 987
36 t75_4_2, dt75_4_2 4116 1,78,1424,2058 12,23,42,497,9821 987
37 t75_4_3, dt75_4_3 2058 1,756,2058 18,42,4949 987
38 t75_4_4, dt75_4_4 4116 1,78,1424,2058 12,23,42,497,9821 987
39 t75_5_0, dt75_5_0 4116 1,78,1424,2058 12,23,42,497,9821 987
40 t75_5_1, dt75_5_1 4116 1,78,1424,2058 12,23,42,497,9821 987
41 t75_5_2, dt75_5_2 2058 1,756,2058 18,42,4949 987
42 t75_5_3, dt75_5_3 2058 1,756,2058 18,42,4949 987
43 t75_5_4, dt75_5_4 2058 1,756,2058 18,42,4949 987
44 t75_6_0, dt75_6_0 4116 1,78,1424,2058 12,23,42,497,9821 987
45 t75_6_1, dt75_6_1 4116 1,78,1424,2058 12,23,42,497,9821 987
46 t75_6_2, dt75_6_2 2058 1,756,2058 18,42,4949 987
47 t75_6_3, dt75_6_3 2058 1,756,2058 18,42,4949 987
48 t75_6_4, dt75_6_4 2058 1,756,2058 18,42,4949 987
49 t75_7_0, dt75_7_0 2058 1,756,2058 18,42,4949 987
50 t75_7_1, dt75_7_1 2058 1,756,2058 18,42,4949 987
51 t75_7_2, dt75_7_2 2058 1,756,2058 18,42,4949 987
52 t75_7_3, dt75_7_3 2058 1,756,2058 18,42,4949 987
53 t75_8_0, dt75_8_0 2058 1,756,2058 18,42,4949 987
54 t75_8_1, dt75_8_1 4116 1,78,1424,2058 12,23,42,497,9821 987
55 t75_8_2, dt75_8_2 4116 1,78,1424,2058 12,23,42,497,9821 985

Key to the table

Only one line is displayed for both a plane and its dual, an asterisk (*) in the first column indicating that the plane is self-dual. Each line includes the following information and isomorphism invariants for each plane.


/ revised February, 2011