Projective Planes of Order 49 Related to t74


I am currently compiling a list of known projective planes of order 49. As part of this enumeration, here are listed the plane t74 and all known planes of order 49 obtained from it by dualizing and deriving. Coming soon: also planes related by the method of lifting quotients. This list is currently incomplete; check back later for a complete enumeration.

Following the table is a key to the table.


Known Projective Planes of Order 49 Related to t74

Entry Plane |Autgp| Point Orbits Line Orbits 7-rank
1 Translation Plane t74, dual dt74 57624 12,26,49,2401 1,492,986,1969 941
2 t74_0_0, dt74_0_0 2058 1,756,2058 18,42,4949 987
3 t74_0_1, dt74_0_1 2058 1,756,2058 18,42,4949 987
4 t74_0_2, dt74_0_2 2058 1,756,2058 18,42,4949 987
5 t74_0_3, dt74_0_3 2058 1,756,2058 18,42,4949 987
6 t74_0_4, dt74_0_4 2058 1,756,2058 18,42,4949 987
7 t74_0_5, dt74_0_5 2058 1,756,2058 18,42,4949 987
8 t74_0_6, dt74_0_6 2058 1,756,2058 18,42,4949 987
9 t74_0_7, dt74_0_7 2058 1,756,2058 18,42,4949 987
10 t74_1_0, dt74_1_0 2058 1,756,2058 18,42,4949 987
11 t74_1_1, dt74_1_1 2058 1,756,2058 18,42,4949 987
12 t74_1_2, dt74_1_2 2058 1,756,2058 18,42,4949 987
13 t74_1_3, dt74_1_3 2058 1,756,2058 18,42,4949 987
14 t74_1_4, dt74_1_4 2058 1,756,2058 18,42,4949 987
15 t74_1_5, dt74_1_5 2058 1,756,2058 18,42,4949 987
16 t74_1_6, dt74_1_6 2058 1,756,2058 18,42,4949 987
17 t74_1_7, dt74_1_7 2058 1,756,2058 18,42,4949 987
18 t74_2_0, dt74_2_0 2058 1,756,2058 18,42,4949 987
19 t74_2_1, dt74_2_1 2058 1,756,2058 18,42,4949 987
20 t74_2_2, dt74_2_2 2058 1,756,2058 18,42,4949 987
21 t74_2_3, dt74_2_3 2058 1,756,2058 18,42,4949 987
22 t74_2_4, dt74_2_4 2058 1,756,2058 18,42,4949 987
23 t74_2_5, dt74_2_5 2058 1,756,2058 18,42,4949 987
24 t74_2_6, dt74_2_6 2058 1,756,2058 18,42,4949 987
25 t74_2_7, dt74_2_7 2058 1,756,2058 18,42,4949 987
26 t74_3_0, dt74_3_0 2058 1,756,2058 18,42,4949 987
27 t74_3_1, dt74_3_1 2058 1,756,2058 18,42,4949 987
28 t74_3_2, dt74_3_2 2058 1,756,2058 18,42,4949 987
29 t74_3_3, dt74_3_3 2058 1,756,2058 18,42,4949 987
30 t74_3_4, dt74_3_4 2058 1,756,2058 18,42,4949 987
31 t74_3_5, dt74_3_5 2058 1,756,2058 18,42,4949 987
32 t74_3_6, dt74_3_6 2058 1,756,2058 18,42,4949 987
33 t74_3_7, dt74_3_7 2058 1,756,2058 18,42,4949 987
34 t74_4_0, dt74_4_0 2058 1,756,2058 18,42,4949 987
35 t74_4_1, dt74_4_1 2058 1,756,2058 18,42,4949 987
36 t74_4_2, dt74_4_2 2058 1,756,2058 18,42,4949 987
37 t74_4_3, dt74_4_3 2058 1,756,2058 18,42,4949 987
38 t74_4_4, dt74_4_4 2058 1,756,2058 18,42,4949 987
39 t74_4_5, dt74_4_5 2058 1,756,2058 18,42,4949 987
40 t74_4_6, dt74_4_6 2058 1,756,2058 18,42,4949 987
41 t74_4_7, dt74_4_7 2058 1,756,2058 18,42,4949 987
42 t74_5_0, dt74_5_0 2058 1,756,2058 18,42,4949 987
43 t74_5_1, dt74_5_1 2058 1,756,2058 18,42,4949 987
44 t74_5_2, dt74_5_2 2058 1,756,2058 18,42,4949 987
45 t74_5_3, dt74_5_3 2058 1,756,2058 18,42,4949 987
46 t74_5_4, dt74_5_4 2058 1,756,2058 18,42,4949 987
47 t74_5_5, dt74_5_5 2058 1,756,2058 18,42,4949 987
48 t74_5_6, dt74_5_6 2058 1,756,2058 18,42,4949 987
49 t74_5_7, dt74_5_7 2058 1,756,2058 18,42,4949 987
50 t74_6_0, dt74_6_0 2058 1,756,2058 18,42,4949 987
51 t74_6_1, dt74_6_1 2058 1,756,2058 18,42,4949 987
52 t74_6_2, dt74_6_2 2058 1,756,2058 18,42,4949 987
53 t74_6_3, dt74_6_3 2058 1,756,2058 18,42,4949 987
54 t74_6_4, dt74_6_4 2058 1,756,2058 18,42,4949 987
55 t74_6_5, dt74_6_5 2058 1,756,2058 18,42,4949 987
56 t74_6_6, dt74_6_6 2058 1,756,2058 18,42,4949 987
57 t74_6_7, dt74_6_7 2058 1,756,2058 18,42,4949 987
58 t74_7_0, dt74_7_0 2058 1,756,2058 18,42,4949 987
59 t74_7_1, dt74_7_1 2058 1,756,2058 18,42,4949 987
60 t74_7_2, dt74_7_2 2058 1,756,2058 18,42,4949 987
61 t74_7_3, dt74_7_3 2058 1,756,2058 18,42,4949 987
62 t74_7_4, dt74_7_4 2058 1,756,2058 18,42,4949 987
63 t74_7_5, dt74_7_5 2058 1,756,2058 18,42,4949 987
64 t74_7_6, dt74_7_6 2058 1,756,2058 18,42,4949 987
65 t74_7_7, dt74_7_7 2058 1,756,2058 18,42,4949 987
66 t74_8_0, dt74_8_0 2058 1,756,2058 18,42,4949 987
67 t74_8_1, dt74_8_1 2058 1,756,2058 18,42,4949 987
68 t74_8_2, dt74_8_2 2058 1,756,2058 18,42,4949 987
69 t74_8_3, dt74_8_3 2058 1,756,2058 18,42,4949 987
70 t74_8_4, dt74_8_4 2058 1,756,2058 18,42,4949 987
71 t74_8_5, dt74_8_5 2058 1,756,2058 18,42,4949 987
72 t74_8_6, dt74_8_6 2058 1,756,2058 18,42,4949 987
73 t74_8_7, dt74_8_7 2058 1,756,2058 18,42,4949 987
74 t74_9_0, dt74_9_0 2058 1,756,2058 18,42,4949 987
75 t74_9_1, dt74_9_1 2058 1,756,2058 18,42,4949 987
76 t74_9_2, dt74_9_2 2058 1,756,2058 18,42,4949 987
77 t74_9_3, dt74_9_3 2058 1,756,2058 18,42,4949 987
78 t74_10_0, dt74_10_0 2058 1,756,2058 18,42,4949 987
79 t74_10_1, dt74_10_1 2058 1,756,2058 18,42,4949 987
80 t74_10_2, dt74_10_2 2058 1,756,2058 18,42,4949 987
81 t74_10_3, dt74_10_3 2058 1,756,2058 18,42,4949 987
82 t74_11_0, dt74_11_0 2058 1,756,2058 18,42,4949 987
83 t74_11_1, dt74_11_1 2058 1,756,2058 18,42,4949 987
84 t74_11_2, dt74_11_2 2058 1,756,2058 18,42,4949 987
85 t74_11_3, dt74_11_3 2058 1,756,2058 18,42,4949 987
86 t74_12_0, dt74_12_0 2058 1,756,2058 18,42,4949 987
87 t74_12_1, dt74_12_1 2058 1,756,2058 18,42,4949 987
88 t74_12_2, dt74_12_2 2058 1,756,2058 18,42,4949 987
89 t74_12_3, dt74_12_3 2058 1,756,2058 18,42,4949 987
90 t74_13_0, dt74_13_0 2058 1,756,2058 18,42,4949 987
91 t74_13_1, dt74_13_1 2058 1,756,2058 18,42,4949 987
92 t74_13_2, dt74_13_2 2058 1,756,2058 18,42,4949 987
93 t74_13_3, dt74_13_3 2058 1,756,2058 18,42,4949 987
94 t74_14_0, dt74_14_0 2058 1,756,2058 18,42,4949 987
95 t74_14_1, dt74_14_1 2058 1,756,2058 18,42,4949 987
96 t74_14_2, dt74_14_2 2058 1,756,2058 18,42,4949 987
97 t74_14_3, dt74_14_3 2058 1,756,2058 18,42,4949 987
98 t74_15_0, dt74_15_0 2058 1,756,2058 18,42,4949 987
99 t74_15_1, dt74_15_1 2058 1,756,2058 18,42,4949 987
100 t74_16_0, dt74_16_0 2058 1,756,2058 18,42,4949 987
101 t74_16_1, dt74_16_1 2058 1,756,2058 18,42,4949 987

Key to the table

Only one line is displayed for both a plane and its dual, an asterisk (*) in the first column indicating that the plane is self-dual. Each line includes the following information and isomorphism invariants for each plane.


/ revised February, 2011