Projective Planes of Order 49 Related to t73


I am currently compiling a list of known projective planes of order 49. As part of this enumeration, here are listed the plane t73 and all known planes of order 49 obtained from it by dualizing and deriving. Coming soon: also planes related by the method of lifting quotients. This list is currently incomplete; check back later for a complete enumeration.

Following the table is a key to the table.


Known Projective Planes of Order 49 Related to t73

Entry Plane |Autgp| Point Orbits Line Orbits 7-rank
1 Translation Plane t73, dual dt73 115248 23,45,83,2401 1,983,1965,3923 939
2 t73_0_0, dt73_0_0 2058 1,756,2058 18,42,4949 987
3 t73_0_1, dt73_0_1 2058 1,756,2058 18,42,4949 987
4 t73_0_2, dt73_0_2 2058 1,756,2058 18,42,4949 987
5 t73_0_3, dt73_0_3 2058 1,756,2058 18,42,4949 987
6 t73_0_4, dt73_0_4 2058 1,756,2058 18,42,4949 987
7 t73_0_5, dt73_0_5 2058 1,756,2058 18,42,4949 987
8 t73_0_6, dt73_0_6 2058 1,756,2058 18,42,4949 987
9 t73_0_7, dt73_0_7 2058 1,756,2058 18,42,4949 985
10 t73_1_0, dt73_1_0 2058 1,756,2058 18,42,4949 987
11 t73_1_1, dt73_1_1 2058 1,756,2058 18,42,4949 987
12 t73_1_2, dt73_1_2 2058 1,756,2058 18,42,4949 987
13 t73_1_3, dt73_1_3 2058 1,756,2058 18,42,4949 987
14 t73_1_4, dt73_1_4 2058 1,756,2058 18,42,4949 987
15 t73_1_5, dt73_1_5 2058 1,756,2058 18,42,4949 987
16 t73_1_6, dt73_1_6 2058 1,756,2058 18,42,4949 987
17 t73_1_7, dt73_1_7 2058 1,756,2058 18,42,4949 987
18 t73_2_0, dt73_2_0 2058 1,756,2058 18,42,4949 987
19 t73_2_1, dt73_2_1 2058 1,756,2058 18,42,4949 987
20 t73_2_2, dt73_2_2 2058 1,756,2058 18,42,4949 987
21 t73_2_3, dt73_2_3 2058 1,756,2058 18,42,4949 987
22 t73_2_4, dt73_2_4 2058 1,756,2058 18,42,4949 987
23 t73_2_5, dt73_2_5 2058 1,756,2058 18,42,4949 987
24 t73_2_6, dt73_2_6 2058 1,756,2058 18,42,4949 987
25 t73_2_7, dt73_2_7 2058 1,756,2058 18,42,4949 987
26 t73_3_0, dt73_3_0 2058 1,756,2058 18,42,4949 987
27 t73_3_1, dt73_3_1 2058 1,756,2058 18,42,4949 987
28 t73_3_2, dt73_3_2 2058 1,756,2058 18,42,4949 987
29 t73_3_3, dt73_3_3 2058 1,756,2058 18,42,4949 987
30 t73_4_0, dt73_4_0 2058 1,756,2058 18,42,4949 987
31 t73_4_1, dt73_4_1 2058 1,756,2058 18,42,4949 987
32 t73_4_2, dt73_4_2 2058 1,756,2058 18,42,4949 987
33 t73_4_3, dt73_4_3 2058 1,756,2058 18,42,4949 987
34 t73_5_0, dt73_5_0 2058 1,756,2058 18,42,4949 987
35 t73_5_1, dt73_5_1 2058 1,756,2058 18,42,4949 987
36 t73_5_2, dt73_5_2 2058 1,756,2058 18,42,4949 987
37 t73_5_3, dt73_5_3 2058 1,756,2058 18,42,4949 987
38 t73_6_0, dt73_6_0 2058 1,756,2058 18,42,4949 987
39 t73_6_1, dt73_6_1 2058 1,756,2058 18,42,4949 987
40 t73_6_2, dt73_6_2 2058 1,756,2058 18,42,4949 987
41 t73_6_3, dt73_6_3 2058 1,756,2058 18,42,4949 987
42 t73_7_0, dt73_7_0 2058 1,756,2058 18,42,4949 987
43 t73_7_1, dt73_7_1 2058 1,756,2058 18,42,4949 987
44 t73_7_2, dt73_7_2 2058 1,756,2058 18,42,4949 987
45 t73_7_3, dt73_7_3 2058 1,756,2058 18,42,4949 987
46 t73_8_0, dt73_8_0 2058 1,756,2058 18,42,4949 987
47 t73_8_1, dt73_8_1 2058 1,756,2058 18,42,4949 987
48 t73_9_0, dt73_9_0 2058 1,756,2058 18,42,4949 987
49 t73_9_1, dt73_9_1 2058 1,756,2058 18,42,4949 987
50 t73_10_0, dt73_10_0 2058 1,756,2058 18,42,4949 987
51 t73_10_1, dt73_10_1 2058 1,756,2058 18,42,4949 987

Key to the table

Only one line is displayed for both a plane and its dual, an asterisk (*) in the first column indicating that the plane is self-dual. Each line includes the following information and isomorphism invariants for each plane.


/ revised February, 2011