Projective Planes of Order 49 Related to t68


I am currently compiling a list of known projective planes of order 49. As part of this enumeration, here are listed the plane t68 and all known planes of order 49 obtained from it by dualizing and deriving. Coming soon: also planes related by the method of lifting quotients. This list is currently incomplete; check back later for a complete enumeration.

Following the table is a key to the table.


Known Projective Planes of Order 49 Related to t68

Entry Plane |Autgp| Point Orbits Line Orbits 7-rank
1 Translation Plane t68, dual dt68 115248 12,46,83,2401 1,492,1966,3923 941
2 t68_0_0, dt68_0_0 2058 1,756,2058 18,42,4949 987
3 t68_0_1, dt68_0_1 2058 1,756,2058 18,42,4949 987
4 t68_0_2, dt68_0_2 2058 1,756,2058 18,42,4949 987
5 t68_0_3, dt68_0_3 2058 1,756,2058 18,42,4949 987
6 t68_0_4, dt68_0_4 2058 1,756,2058 18,42,4949 987
7 t68_0_5, dt68_0_5 2058 1,756,2058 18,42,4949 987
8 t68_0_6, dt68_0_6 2058 1,756,2058 18,42,4949 987
9 t68_0_7, dt68_0_7 2058 1,756,2058 18,42,4949 987
10 t68_1_0, dt68_1_0 2058 1,756,2058 18,42,4949 987
11 t68_1_1, dt68_1_1 2058 1,756,2058 18,42,4949 987
12 t68_1_2, dt68_1_2 2058 1,756,2058 18,42,4949 987
13 t68_1_3, dt68_1_3 2058 1,756,2058 18,42,4949 987
14 t68_1_4, dt68_1_4 2058 1,756,2058 18,42,4949 987
15 t68_1_5, dt68_1_5 2058 1,756,2058 18,42,4949 987
16 t68_1_6, dt68_1_6 2058 1,756,2058 18,42,4949 987
17 t68_1_7, dt68_1_7 2058 1,756,2058 18,42,4949 987
18 t68_2_0, dt68_2_0 2058 1,756,2058 18,42,4949 987
19 t68_2_1, dt68_2_1 2058 1,756,2058 18,42,4949 987
20 t68_2_2, dt68_2_2 2058 1,756,2058 18,42,4949 987
21 t68_2_3, dt68_2_3 2058 1,756,2058 18,42,4949 987
22 t68_2_4, dt68_2_4 2058 1,756,2058 18,42,4949 987
23 t68_2_5, dt68_2_5 2058 1,756,2058 18,42,4949 987
24 t68_2_6, dt68_2_6 2058 1,756,2058 18,42,4949 987
25 t68_2_7, dt68_2_7 2058 1,756,2058 18,42,4949 987
26 t68_3_0, dt68_3_0 2058 1,756,2058 18,42,4949 987
27 t68_3_1, dt68_3_1 2058 1,756,2058 18,42,4949 987
28 t68_3_2, dt68_3_2 2058 1,756,2058 18,42,4949 987
29 t68_3_3, dt68_3_3 2058 1,756,2058 18,42,4949 987
30 t68_4_0, dt68_4_0 2058 1,756,2058 18,42,4949 987
31 t68_4_1, dt68_4_1 2058 1,756,2058 18,42,4949 987
32 t68_4_2, dt68_4_2 2058 1,756,2058 18,42,4949 987
33 t68_4_3, dt68_4_3 2058 1,756,2058 18,42,4949 987
34 t68_5_0, dt68_5_0 2058 1,756,2058 18,42,4949 987
35 t68_5_1, dt68_5_1 2058 1,756,2058 18,42,4949 987
36 t68_5_2, dt68_5_2 2058 1,756,2058 18,42,4949 987
37 t68_5_3, dt68_5_3 2058 1,756,2058 18,42,4949 987
38 t68_6_0, dt68_6_0 2058 1,756,2058 18,42,4949 987
39 t68_6_1, dt68_6_1 2058 1,756,2058 18,42,4949 987
40 t68_6_2, dt68_6_2 2058 1,756,2058 18,42,4949 987
41 t68_6_3, dt68_6_3 2058 1,756,2058 18,42,4949 987
42 t68_7_0, dt68_7_0 2058 1,756,2058 18,42,4949 987
43 t68_7_1, dt68_7_1 2058 1,756,2058 18,42,4949 987
44 t68_7_2, dt68_7_2 2058 1,756,2058 18,42,4949 987
45 t68_7_3, dt68_7_3 2058 1,756,2058 18,42,4949 987
46 t68_8_0, dt68_8_0 2058 1,756,2058 18,42,4949 987
47 t68_8_1, dt68_8_1 2058 1,756,2058 18,42,4949 987
48 t68_8_2, dt68_8_2 2058 1,756,2058 18,42,4949 987
49 t68_8_3, dt68_8_3 2058 1,756,2058 18,42,4949 987
50 t68_9_0, dt68_9_0 2058 1,756,2058 18,42,4949 987
51 t68_10_0, dt68_10_0 2058 1,756,2058 18,42,4949 987

Key to the table

Only one line is displayed for both a plane and its dual, an asterisk (*) in the first column indicating that the plane is self-dual. Each line includes the following information and isomorphism invariants for each plane.


/ revised February, 2011