Projective Planes of Order 49 Related to t67


I am currently compiling a list of known projective planes of order 49. As part of this enumeration, here are listed the plane t67 and all known planes of order 49 obtained from it by dualizing and deriving. Coming soon: also planes related by the method of lifting quotients. This list is currently incomplete; check back later for a complete enumeration.

Following the table is a key to the table.


Known Projective Planes of Order 49 Related to t67

Entry Plane |Autgp| Point Orbits Line Orbits 7-rank
1 Translation Plane t67, dual dt67 57624 12,24,410,2401 1,492,984,19610 941
2 t67_0_0, dt67_0_0 2058 1,756,2058 18,42,4949 987
3 t67_0_1, dt67_0_1 2058 1,756,2058 18,42,4949 987
4 t67_0_2, dt67_0_2 2058 1,756,2058 18,42,4949 987
5 t67_0_3, dt67_0_3 2058 1,756,2058 18,42,4949 987
6 t67_0_4, dt67_0_4 2058 1,756,2058 18,42,4949 987
7 t67_0_5, dt67_0_5 2058 1,756,2058 18,42,4949 987
8 t67_0_6, dt67_0_6 2058 1,756,2058 18,42,4949 987
9 t67_0_7, dt67_0_7 2058 1,756,2058 18,42,4949 987
10 t67_1_0, dt67_1_0 2058 1,756,2058 18,42,4949 987
11 t67_1_1, dt67_1_1 2058 1,756,2058 18,42,4949 987
12 t67_1_2, dt67_1_2 2058 1,756,2058 18,42,4949 987
13 t67_1_3, dt67_1_3 2058 1,756,2058 18,42,4949 987
14 t67_1_4, dt67_1_4 2058 1,756,2058 18,42,4949 987
15 t67_1_5, dt67_1_5 2058 1,756,2058 18,42,4949 987
16 t67_1_6, dt67_1_6 2058 1,756,2058 18,42,4949 987
17 t67_1_7, dt67_1_7 2058 1,756,2058 18,42,4949 987
18 t67_2_0, dt67_2_0 2058 1,756,2058 18,42,4949 987
19 t67_2_1, dt67_2_1 2058 1,756,2058 18,42,4949 987
20 t67_2_2, dt67_2_2 2058 1,756,2058 18,42,4949 987
21 t67_2_3, dt67_2_3 2058 1,756,2058 18,42,4949 987
22 t67_2_4, dt67_2_4 2058 1,756,2058 18,42,4949 987
23 t67_2_5, dt67_2_5 2058 1,756,2058 18,42,4949 987
24 t67_2_6, dt67_2_6 2058 1,756,2058 18,42,4949 987
25 t67_2_7, dt67_2_7 2058 1,756,2058 18,42,4949 987
26 t67_3_0, dt67_3_0 2058 1,756,2058 18,42,4949 987
27 t67_3_1, dt67_3_1 2058 1,756,2058 18,42,4949 987
28 t67_3_2, dt67_3_2 2058 1,756,2058 18,42,4949 987
29 t67_3_3, dt67_3_3 2058 1,756,2058 18,42,4949 987
30 t67_3_4, dt67_3_4 2058 1,756,2058 18,42,4949 987
31 t67_3_5, dt67_3_5 2058 1,756,2058 18,42,4949 987
32 t67_3_6, dt67_3_6 2058 1,756,2058 18,42,4949 987
33 t67_3_7, dt67_3_7 2058 1,756,2058 18,42,4949 987
34 t67_4_0, dt67_4_0 2058 1,756,2058 18,42,4949 987
35 t67_4_1, dt67_4_1 2058 1,756,2058 18,42,4949 987
36 t67_4_2, dt67_4_2 2058 1,756,2058 18,42,4949 987
37 t67_4_3, dt67_4_3 2058 1,756,2058 18,42,4949 987
38 t67_4_4, dt67_4_4 2058 1,756,2058 18,42,4949 987
39 t67_4_5, dt67_4_5 2058 1,756,2058 18,42,4949 987
40 t67_4_6, dt67_4_6 2058 1,756,2058 18,42,4949 987
41 t67_4_7, dt67_4_7 2058 1,756,2058 18,42,4949 987
42 t67_5_0, dt67_5_0 2058 1,756,2058 18,42,4949 987
43 t67_5_1, dt67_5_1 2058 1,756,2058 18,42,4949 987
44 t67_5_2, dt67_5_2 2058 1,756,2058 18,42,4949 987
45 t67_5_3, dt67_5_3 2058 1,756,2058 18,42,4949 987
46 t67_5_4, dt67_5_4 2058 1,756,2058 18,42,4949 987
47 t67_5_5, dt67_5_5 2058 1,756,2058 18,42,4949 987
48 t67_5_6, dt67_5_6 2058 1,756,2058 18,42,4949 987
49 t67_5_7, dt67_5_7 2058 1,756,2058 18,42,4949 987
50 t67_6_0, dt67_6_0 2058 1,756,2058 18,42,4949 987
51 t67_6_1, dt67_6_1 2058 1,756,2058 18,42,4949 987
52 t67_6_2, dt67_6_2 2058 1,756,2058 18,42,4949 987
53 t67_6_3, dt67_6_3 2058 1,756,2058 18,42,4949 987
54 t67_6_4, dt67_6_4 2058 1,756,2058 18,42,4949 987
55 t67_6_5, dt67_6_5 2058 1,756,2058 18,42,4949 985
56 t67_6_6, dt67_6_6 2058 1,756,2058 18,42,4949 987
57 t67_6_7, dt67_6_7 2058 1,756,2058 18,42,4949 987
58 t67_7_0, dt67_7_0 2058 1,756,2058 18,42,4949 987
59 t67_7_1, dt67_7_1 2058 1,756,2058 18,42,4949 987
60 t67_7_2, dt67_7_2 2058 1,756,2058 18,42,4949 987
61 t67_7_3, dt67_7_3 2058 1,756,2058 18,42,4949 987
62 t67_7_4, dt67_7_4 2058 1,756,2058 18,42,4949 987
63 t67_7_5, dt67_7_5 2058 1,756,2058 18,42,4949 987
64 t67_7_6, dt67_7_6 2058 1,756,2058 18,42,4949 987
65 t67_7_7, dt67_7_7 2058 1,756,2058 18,42,4949 987
66 t67_8_0, dt67_8_0 2058 1,756,2058 18,42,4949 987
67 t67_8_1, dt67_8_1 2058 1,756,2058 18,42,4949 987
68 t67_8_2, dt67_8_2 2058 1,756,2058 18,42,4949 987
69 t67_8_3, dt67_8_3 2058 1,756,2058 18,42,4949 987
70 t67_8_4, dt67_8_4 2058 1,756,2058 18,42,4949 987
71 t67_8_5, dt67_8_5 2058 1,756,2058 18,42,4949 987
72 t67_8_6, dt67_8_6 2058 1,756,2058 18,42,4949 987
73 t67_8_7, dt67_8_7 2058 1,756,2058 18,42,4949 987
74 t67_9_0, dt67_9_0 2058 1,756,2058 18,42,4949 987
75 t67_9_1, dt67_9_1 2058 1,756,2058 18,42,4949 987
76 t67_9_2, dt67_9_2 2058 1,756,2058 18,42,4949 987
77 t67_9_3, dt67_9_3 2058 1,756,2058 18,42,4949 987
78 t67_9_4, dt67_9_4 2058 1,756,2058 18,42,4949 987
79 t67_9_5, dt67_9_5 2058 1,756,2058 18,42,4949 987
80 t67_9_6, dt67_9_6 2058 1,756,2058 18,42,4949 987
81 t67_9_7, dt67_9_7 2058 1,756,2058 18,42,4949 985
82 t67_10_0, dt67_10_0 2058 1,756,2058 18,42,4949 987
83 t67_10_1, dt67_10_1 2058 1,756,2058 18,42,4949 987
84 t67_10_2, dt67_10_2 2058 1,756,2058 18,42,4949 987
85 t67_10_3, dt67_10_3 2058 1,756,2058 18,42,4949 987
86 t67_11_0, dt67_11_0 2058 1,756,2058 18,42,4949 987
87 t67_11_1, dt67_11_1 2058 1,756,2058 18,42,4949 987
88 t67_11_2, dt67_11_2 2058 1,756,2058 18,42,4949 987
89 t67_11_3, dt67_11_3 2058 1,756,2058 18,42,4949 987
90 t67_12_0, dt67_12_0 2058 1,756,2058 18,42,4949 987
91 t67_12_1, dt67_12_1 2058 1,756,2058 18,42,4949 987
92 t67_12_2, dt67_12_2 2058 1,756,2058 18,42,4949 987
93 t67_12_3, dt67_12_3 2058 1,756,2058 18,42,4949 987
94 t67_13_0, dt67_13_0 2058 1,756,2058 18,42,4949 987
95 t67_13_1, dt67_13_1 2058 1,756,2058 18,42,4949 987
96 t67_13_2, dt67_13_2 2058 1,756,2058 18,42,4949 987
97 t67_13_3, dt67_13_3 2058 1,756,2058 18,42,4949 987
98 t67_14_0, dt67_14_0 2058 1,756,2058 18,42,4949 987
99 t67_14_1, dt67_14_1 2058 1,756,2058 18,42,4949 987
100 t67_15_0, dt67_15_0 2058 1,756,2058 18,42,4949 987
101 t67_15_1, dt67_15_1 2058 1,756,2058 18,42,4949 987

Key to the table

Only one line is displayed for both a plane and its dual, an asterisk (*) in the first column indicating that the plane is self-dual. Each line includes the following information and isomorphism invariants for each plane.


/ revised February, 2011