Projective Planes of Order 49 Related to t66


I am currently compiling a list of known projective planes of order 49. As part of this enumeration, here are listed the plane t66 and all known planes of order 49 obtained from it by dualizing and deriving. Coming soon: also planes related by the method of lifting quotients. This list is currently incomplete; check back later for a complete enumeration.

Following the table is a key to the table.


Known Projective Planes of Order 49 Related to t66

Entry Plane |Autgp| Point Orbits Line Orbits 7-rank
1 Translation Plane t66, dual dt66 172872 24,34,63,12,2401 1,984,1474,2943,588 939
2 t66_0_0, dt66_0_0 2058 1,756,2058 18,42,4949 987
3 t66_0_1, dt66_0_1 2058 1,756,2058 18,42,4949 987
4 t66_0_2, dt66_0_2 2058 1,756,2058 18,42,4949 987
5 t66_0_3, dt66_0_3 2058 1,756,2058 18,42,4949 987
6 t66_0_4, dt66_0_4 2058 1,756,2058 18,42,4949 987
7 t66_0_5, dt66_0_5 2058 1,756,2058 18,42,4949 987
8 t66_0_6, dt66_0_6 2058 1,756,2058 18,42,4949 987
9 t66_0_7, dt66_0_7 2058 1,756,2058 18,42,4949 987
10 t66_1_0, dt66_1_0 2058 1,756,2058 18,42,4949 987
11 t66_1_1, dt66_1_1 2058 1,756,2058 18,42,4949 987
12 t66_1_2, dt66_1_2 2058 1,756,2058 18,42,4949 987
13 t66_1_3, dt66_1_3 2058 1,756,2058 18,42,4949 987
14 t66_2_0, dt66_2_0 2058 1,756,2058 18,42,4949 987
15 t66_2_1, dt66_2_1 2058 1,756,2058 18,42,4949 987
16 t66_2_2, dt66_2_2 2058 1,756,2058 18,42,4949 987
17 t66_2_3, dt66_2_3 2058 1,756,2058 18,42,4949 987
18 t66_3_0, dt66_3_0 2058 1,756,2058 18,42,4949 987
19 t66_3_1, dt66_3_1 2058 1,756,2058 18,42,4949 987
20 t66_3_2, dt66_3_2 2058 1,756,2058 18,42,4949 987
21 t66_3_3, dt66_3_3 2058 1,756,2058 18,42,4949 987
22 t66_4_0, dt66_4_0 2058 1,756,2058 18,42,4949 987
23 t66_4_1, dt66_4_1 2058 1,756,2058 18,42,4949 987
24 t66_5_0, dt66_5_0 2058 1,756,2058 18,42,4949 987
25 t66_5_1, dt66_5_1 2058 1,756,2058 18,42,4949 987
26 t66_6_0, dt66_6_0 2058 1,756,2058 18,42,4949 987
27 t66_6_1, dt66_6_1 2058 1,756,2058 18,42,4949 987
28 t66_7_0, dt66_7_0 2058 1,756,2058 18,42,4949 987
29 t66_7_1, dt66_7_1 2058 1,756,2058 18,42,4949 987
30 t66_8_0, dt66_8_0 6174 1,78,2116,2058 12,32,42,497,14714 987
31 t66_8_1, dt66_8_1 2058 1,756,2058 18,42,4949 987
32 t66_9_0, dt66_9_0 6174 1,78,2116,2058 12,32,42,497,14714 987
33 t66_9_1, dt66_9_1 2058 1,756,2058 18,42,4949 987
34 t66_10_0, dt66_10_0 2058 1,756,2058 18,42,4949 987
35 t66_10_1, dt66_10_1 6174 1,78,2116,2058 12,32,42,497,14714 987
36 t66_11_0, dt66_11_0 2058 1,756,2058 18,42,4949 987
37 t66_11_1, dt66_11_1 6174 1,78,2116,2058 12,32,42,497,14714 987

Key to the table

Only one line is displayed for both a plane and its dual, an asterisk (*) in the first column indicating that the plane is self-dual. Each line includes the following information and isomorphism invariants for each plane.


/ revised February, 2011