Projective Planes of Order 49 Related to t62


I am currently compiling a list of known projective planes of order 49. As part of this enumeration, here are listed the plane t62 and all known planes of order 49 obtained from it by dualizing and deriving. Coming soon: also planes related by the method of lifting quotients. This list is currently incomplete; check back later for a complete enumeration.

Following the table is a key to the table.


Known Projective Planes of Order 49 Related to t62

Entry Plane |Autgp| Point Orbits Line Orbits 7-rank
1 Translation Plane t62, dual dt62 115248 14,25,43,83,2401 1,494,985,1963,3923 941
2 t62_0_0, dt62_0_0 2058 1,756,2058 18,42,4949 987
3 t62_0_1, dt62_0_1 2058 1,756,2058 18,42,4949 987
4 t62_0_2, dt62_0_2 2058 1,756,2058 18,42,4949 987
5 t62_0_3, dt62_0_3 2058 1,756,2058 18,42,4949 987
6 t62_0_4, dt62_0_4 2058 1,756,2058 18,42,4949 987
7 t62_0_5, dt62_0_5 2058 1,756,2058 18,42,4949 987
8 t62_0_6, dt62_0_6 2058 1,756,2058 18,42,4949 987
9 t62_0_7, dt62_0_7 2058 1,756,2058 18,42,4949 987
10 t62_1_0, dt62_1_0 2058 1,756,2058 18,42,4949 987
11 t62_1_1, dt62_1_1 2058 1,756,2058 18,42,4949 987
12 t62_1_2, dt62_1_2 2058 1,756,2058 18,42,4949 987
13 t62_1_3, dt62_1_3 2058 1,756,2058 18,42,4949 987
14 t62_1_4, dt62_1_4 2058 1,756,2058 18,42,4949 987
15 t62_1_5, dt62_1_5 2058 1,756,2058 18,42,4949 987
16 t62_1_6, dt62_1_6 2058 1,756,2058 18,42,4949 987
17 t62_1_7, dt62_1_7 2058 1,756,2058 18,42,4949 987
18 t62_2_0, dt62_2_0 2058 1,756,2058 18,42,4949 987
19 t62_2_1, dt62_2_1 2058 1,756,2058 18,42,4949 987
20 t62_2_2, dt62_2_2 2058 1,756,2058 18,42,4949 987
21 t62_2_3, dt62_2_3 2058 1,756,2058 18,42,4949 987
22 t62_2_4, dt62_2_4 2058 1,756,2058 18,42,4949 987
23 t62_2_5, dt62_2_5 2058 1,756,2058 18,42,4949 987
24 t62_2_6, dt62_2_6 2058 1,756,2058 18,42,4949 987
25 t62_2_7, dt62_2_7 2058 1,756,2058 18,42,4949 987
26 t62_3_0, dt62_3_0 2058 1,756,2058 18,42,4949 987
27 t62_3_1, dt62_3_1 2058 1,756,2058 18,42,4949 987
28 t62_3_2, dt62_3_2 2058 1,756,2058 18,42,4949 987
29 t62_3_3, dt62_3_3 2058 1,756,2058 18,42,4949 987
30 t62_4_0, dt62_4_0 2058 1,756,2058 18,42,4949 987
31 t62_4_1, dt62_4_1 2058 1,756,2058 18,42,4949 987
32 t62_4_2, dt62_4_2 2058 1,756,2058 18,42,4949 987
33 t62_4_3, dt62_4_3 2058 1,756,2058 18,42,4949 987
34 t62_5_0, dt62_5_0 2058 1,756,2058 18,42,4949 987
35 t62_5_1, dt62_5_1 2058 1,756,2058 18,42,4949 987
36 t62_5_2, dt62_5_2 2058 1,756,2058 18,42,4949 987
37 t62_5_3, dt62_5_3 2058 1,756,2058 18,42,4949 987
38 t62_6_0, dt62_6_0 2058 1,756,2058 18,42,4949 987
39 t62_6_1, dt62_6_1 2058 1,756,2058 18,42,4949 987
40 t62_7_0, dt62_7_0 2058 1,756,2058 18,42,4949 985
41 t62_7_1, dt62_7_1 2058 1,756,2058 18,42,4949 987
42 t62_8_0, dt62_8_0 2058 1,756,2058 18,42,4949 987
43 t62_8_1, dt62_8_1 2058 1,756,2058 18,42,4949 987
44 t62_9_0, dt62_9_0 2058 1,756,2058 18,42,4949 987
45 t62_9_1, dt62_9_1 2058 1,756,2058 18,42,4949 985
46 t62_10_0, dt62_10_0 2058 1,756,2058 18,42,4949 987
47 t62_10_1, dt62_10_1 2058 1,756,2058 18,42,4949 987
48 t62_11_0, dt62_11_0 2058 1,756,2058 18,42,4949 987
49 t62_12_0, dt62_12_0 2058 1,756,2058 18,42,4949 987
50 t62_13_0, dt62_13_0 2058 1,756,2058 18,42,4949 987
51 t62_14_0, dt62_14_0 2058 1,756,2058 18,42,4949 987

Key to the table

Only one line is displayed for both a plane and its dual, an asterisk (*) in the first column indicating that the plane is self-dual. Each line includes the following information and isomorphism invariants for each plane.


/ revised February, 2011