Projective Planes of Order 49 Related to t61


I am currently compiling a list of known projective planes of order 49. As part of this enumeration, here are listed the plane t61 and all known planes of order 49 obtained from it by dualizing and deriving. Coming soon: also planes related by the method of lifting quotients. This list is currently incomplete; check back later for a complete enumeration.

Following the table is a key to the table.


Known Projective Planes of Order 49 Related to t61

Entry Plane |Autgp| Point Orbits Line Orbits 7-rank
1 Translation Plane t61, dual dt61 115248 16,28,43,82,2401 1,496,988,1963,3922 941
2 t61_0_0, dt61_0_0 2058 1,756,2058 18,42,4949 987
3 t61_0_1, dt61_0_1 2058 1,756,2058 18,42,4949 987
4 t61_0_2, dt61_0_2 2058 1,756,2058 18,42,4949 987
5 t61_0_3, dt61_0_3 2058 1,756,2058 18,42,4949 987
6 t61_0_4, dt61_0_4 2058 1,756,2058 18,42,4949 987
7 t61_0_5, dt61_0_5 2058 1,756,2058 18,42,4949 987
8 t61_0_6, dt61_0_6 2058 1,756,2058 18,42,4949 987
9 t61_0_7, dt61_0_7 2058 1,756,2058 18,42,4949 987
10 t61_1_0, dt61_1_0 2058 1,756,2058 18,42,4949 987
11 t61_1_1, dt61_1_1 2058 1,756,2058 18,42,4949 987
12 t61_1_2, dt61_1_2 2058 1,756,2058 18,42,4949 987
13 t61_1_3, dt61_1_3 2058 1,756,2058 18,42,4949 987
14 t61_1_4, dt61_1_4 2058 1,756,2058 18,42,4949 987
15 t61_1_5, dt61_1_5 2058 1,756,2058 18,42,4949 987
16 t61_1_6, dt61_1_6 2058 1,756,2058 18,42,4949 987
17 t61_1_7, dt61_1_7 2058 1,756,2058 18,42,4949 987
18 t61_2_0, dt61_2_0 2058 1,756,2058 18,42,4949 987
19 t61_2_1, dt61_2_1 2058 1,756,2058 18,42,4949 987
20 t61_2_2, dt61_2_2 2058 1,756,2058 18,42,4949 987
21 t61_2_3, dt61_2_3 2058 1,756,2058 18,42,4949 987
22 t61_3_0, dt61_3_0 2058 1,756,2058 18,42,4949 987
23 t61_3_1, dt61_3_1 2058 1,756,2058 18,42,4949 987
24 t61_3_2, dt61_3_2 2058 1,756,2058 18,42,4949 987
25 t61_3_3, dt61_3_3 2058 1,756,2058 18,42,4949 987
26 t61_4_0, dt61_4_0 2058 1,756,2058 18,42,4949 987
27 t61_4_1, dt61_4_1 2058 1,756,2058 18,42,4949 987
28 t61_4_2, dt61_4_2 2058 1,756,2058 18,42,4949 987
29 t61_4_3, dt61_4_3 2058 1,756,2058 18,42,4949 987
30 t61_5_0, dt61_5_0 2058 1,756,2058 18,42,4949 987
31 t61_5_1, dt61_5_1 2058 1,756,2058 18,42,4949 987
32 t61_6_0, dt61_6_0 2058 1,756,2058 18,42,4949 987
33 t61_6_1, dt61_6_1 2058 1,756,2058 18,42,4949 987
34 t61_7_0, dt61_7_0 2058 1,756,2058 18,42,4949 987
35 t61_7_1, dt61_7_1 2058 1,756,2058 18,42,4949 987
36 t61_8_0, dt61_8_0 2058 1,756,2058 18,42,4949 987
37 t61_8_1, dt61_8_1 2058 1,756,2058 18,42,4949 987
38 t61_9_0, dt61_9_0 2058 1,756,2058 18,42,4949 987
39 t61_9_1, dt61_9_1 2058 1,756,2058 18,42,4949 987
40 t61_10_0, dt61_10_0 2058 1,756,2058 18,42,4949 987
41 t61_10_1, dt61_10_1 2058 1,756,2058 18,42,4949 987
42 t61_11_0, dt61_11_0 2058 1,756,2058 18,42,4949 987
43 t61_11_1, dt61_11_1 2058 1,756,2058 18,42,4949 987
44 t61_12_0, dt61_12_0 2058 1,756,2058 18,42,4949 987
45 t61_12_1, dt61_12_1 2058 1,756,2058 18,42,4949 987
46 t61_13_0, dt61_13_0 2058 1,756,2058 18,42,4949 987
47 t61_14_0, dt61_14_0 2058 1,756,2058 18,42,4949 987
48 t61_15_0, dt61_15_0 2058 1,756,2058 18,42,4949 987
49 t61_16_0, dt61_16_0 2058 1,756,2058 18,42,4949 987
50 t61_17_0, dt61_17_0 2058 1,756,2058 18,42,4949 987
51 t61_18_0, dt61_18_0 2058 1,756,2058 18,42,4949 987

Key to the table

Only one line is displayed for both a plane and its dual, an asterisk (*) in the first column indicating that the plane is self-dual. Each line includes the following information and isomorphism invariants for each plane.


/ revised February, 2011