Projective Planes of Order 49 Related to t60


I am currently compiling a list of known projective planes of order 49. As part of this enumeration, here are listed the plane t60 and all known planes of order 49 obtained from it by dualizing and deriving. Coming soon: also planes related by the method of lifting quotients. This list is currently incomplete; check back later for a complete enumeration.

Following the table is a key to the table.


Known Projective Planes of Order 49 Related to t60

Entry Plane |Autgp| Point Orbits Line Orbits 7-rank
1 Translation Plane t60, dual dt60 115248 12,22,45,83,2401 1,492,982,1965,3923 939
2 t60_0_0, dt60_0_0 2058 1,756,2058 18,42,4949 987
3 t60_0_1, dt60_0_1 2058 1,756,2058 18,42,4949 987
4 t60_0_2, dt60_0_2 2058 1,756,2058 18,42,4949 987
5 t60_0_3, dt60_0_3 2058 1,756,2058 18,42,4949 987
6 t60_0_4, dt60_0_4 2058 1,756,2058 18,42,4949 987
7 t60_0_5, dt60_0_5 2058 1,756,2058 18,42,4949 987
8 t60_0_6, dt60_0_6 2058 1,756,2058 18,42,4949 987
9 t60_0_7, dt60_0_7 2058 1,756,2058 18,42,4949 987
10 t60_1_0, dt60_1_0 2058 1,756,2058 18,42,4949 987
11 t60_1_1, dt60_1_1 2058 1,756,2058 18,42,4949 987
12 t60_1_2, dt60_1_2 2058 1,756,2058 18,42,4949 987
13 t60_1_3, dt60_1_3 2058 1,756,2058 18,42,4949 987
14 t60_1_4, dt60_1_4 2058 1,756,2058 18,42,4949 987
15 t60_1_5, dt60_1_5 2058 1,756,2058 18,42,4949 987
16 t60_1_6, dt60_1_6 2058 1,756,2058 18,42,4949 987
17 t60_1_7, dt60_1_7 2058 1,756,2058 18,42,4949 987
18 t60_2_0, dt60_2_0 2058 1,756,2058 18,42,4949 987
19 t60_2_1, dt60_2_1 2058 1,756,2058 18,42,4949 987
20 t60_2_2, dt60_2_2 2058 1,756,2058 18,42,4949 987
21 t60_2_3, dt60_2_3 2058 1,756,2058 18,42,4949 987
22 t60_2_4, dt60_2_4 2058 1,756,2058 18,42,4949 987
23 t60_2_5, dt60_2_5 2058 1,756,2058 18,42,4949 987
24 t60_2_6, dt60_2_6 2058 1,756,2058 18,42,4949 987
25 t60_2_7, dt60_2_7 2058 1,756,2058 18,42,4949 987
26 t60_3_0, dt60_3_0 2058 1,756,2058 18,42,4949 987
27 t60_3_1, dt60_3_1 2058 1,756,2058 18,42,4949 987
28 t60_3_2, dt60_3_2 2058 1,756,2058 18,42,4949 987
29 t60_3_3, dt60_3_3 2058 1,756,2058 18,42,4949 987
30 t60_4_0, dt60_4_0 2058 1,756,2058 18,42,4949 987
31 t60_4_1, dt60_4_1 2058 1,756,2058 18,42,4949 987
32 t60_4_2, dt60_4_2 2058 1,756,2058 18,42,4949 987
33 t60_4_3, dt60_4_3 2058 1,756,2058 18,42,4949 987
34 t60_5_0, dt60_5_0 2058 1,756,2058 18,42,4949 987
35 t60_5_1, dt60_5_1 2058 1,756,2058 18,42,4949 987
36 t60_5_2, dt60_5_2 2058 1,756,2058 18,42,4949 987
37 t60_5_3, dt60_5_3 2058 1,756,2058 18,42,4949 987
38 t60_6_0, dt60_6_0 2058 1,756,2058 18,42,4949 987
39 t60_6_1, dt60_6_1 2058 1,756,2058 18,42,4949 987
40 t60_6_2, dt60_6_2 2058 1,756,2058 18,42,4949 987
41 t60_6_3, dt60_6_3 2058 1,756,2058 18,42,4949 987
42 t60_7_0, dt60_7_0 2058 1,756,2058 18,42,4949 987
43 t60_7_1, dt60_7_1 2058 1,756,2058 18,42,4949 987
44 t60_7_2, dt60_7_2 2058 1,756,2058 18,42,4949 987
45 t60_7_3, dt60_7_3 2058 1,756,2058 18,42,4949 987
46 t60_8_0, dt60_8_0 2058 1,756,2058 18,42,4949 987
47 t60_8_1, dt60_8_1 2058 1,756,2058 18,42,4949 987
48 t60_9_0, dt60_9_0 2058 1,756,2058 18,42,4949 987
49 t60_9_1, dt60_9_1 2058 1,756,2058 18,42,4949 987
50 t60_10_0, dt60_10_0 4116 1,78,1424,2058 18,42,49,9824 987
51 t60_10_1, dt60_10_1 4116 1,78,1424,2058 18,42,49,9824 985
52 t60_11_0, dt60_11_0 4116 1,78,1424,2058 18,42,49,9824 987
53 t60_11_1, dt60_11_1 4116 1,78,1424,2058 18,42,49,9824 987

Key to the table

Only one line is displayed for both a plane and its dual, an asterisk (*) in the first column indicating that the plane is self-dual. Each line includes the following information and isomorphism invariants for each plane.


/ revised February, 2011