Projective Planes of Order 49 Related to t59


I am currently compiling a list of known projective planes of order 49. As part of this enumeration, here are listed the plane t59 and all known planes of order 49 obtained from it by dualizing and deriving. Coming soon: also planes related by the method of lifting quotients. This list is currently incomplete; check back later for a complete enumeration.

Following the table is a key to the table.


Known Projective Planes of Order 49 Related to t59

Entry Plane |Autgp| Point Orbits Line Orbits 7-rank
1 Translation Plane t59, dual dt59 115248 25,44,83,2401 1,985,1964,3923 941
2 t59_0_0, dt59_0_0 2058 1,756,2058 18,42,4949 987
3 t59_0_1, dt59_0_1 2058 1,756,2058 18,42,4949 987
4 t59_0_2, dt59_0_2 2058 1,756,2058 18,42,4949 987
5 t59_0_3, dt59_0_3 2058 1,756,2058 18,42,4949 987
6 t59_0_4, dt59_0_4 2058 1,756,2058 18,42,4949 987
7 t59_0_5, dt59_0_5 2058 1,756,2058 18,42,4949 987
8 t59_0_6, dt59_0_6 2058 1,756,2058 18,42,4949 987
9 t59_0_7, dt59_0_7 2058 1,756,2058 18,42,4949 987
10 t59_1_0, dt59_1_0 2058 1,756,2058 18,42,4949 987
11 t59_1_1, dt59_1_1 2058 1,756,2058 18,42,4949 987
12 t59_1_2, dt59_1_2 2058 1,756,2058 18,42,4949 987
13 t59_1_3, dt59_1_3 2058 1,756,2058 18,42,4949 987
14 t59_1_4, dt59_1_4 2058 1,756,2058 18,42,4949 987
15 t59_1_5, dt59_1_5 2058 1,756,2058 18,42,4949 987
16 t59_1_6, dt59_1_6 2058 1,756,2058 18,42,4949 987
17 t59_1_7, dt59_1_7 2058 1,756,2058 18,42,4949 987
18 t59_2_0, dt59_2_0 2058 1,756,2058 18,42,4949 987
19 t59_2_1, dt59_2_1 2058 1,756,2058 18,42,4949 987
20 t59_2_2, dt59_2_2 2058 1,756,2058 18,42,4949 987
21 t59_2_3, dt59_2_3 2058 1,756,2058 18,42,4949 987
22 t59_2_4, dt59_2_4 2058 1,756,2058 18,42,4949 987
23 t59_2_5, dt59_2_5 2058 1,756,2058 18,42,4949 987
24 t59_2_6, dt59_2_6 2058 1,756,2058 18,42,4949 987
25 t59_2_7, dt59_2_7 2058 1,756,2058 18,42,4949 987
26 t59_3_0, dt59_3_0 2058 1,756,2058 18,42,4949 987
27 t59_3_1, dt59_3_1 2058 1,756,2058 18,42,4949 987
28 t59_3_2, dt59_3_2 2058 1,756,2058 18,42,4949 987
29 t59_3_3, dt59_3_3 4116 1,78,1424,2058 12,23,42,497,9821 987
30 t59_3_4, dt59_3_4 4116 1,78,1424,2058 12,23,42,497,9821 987
31 t59_4_0, dt59_4_0 2058 1,756,2058 18,42,4949 987
32 t59_4_1, dt59_4_1 2058 1,756,2058 18,42,4949 987
33 t59_4_2, dt59_4_2 4116 1,78,1424,2058 12,23,42,497,9821 987
34 t59_4_3, dt59_4_3 4116 1,78,1424,2058 12,23,42,497,9821 987
35 t59_4_4, dt59_4_4 2058 1,756,2058 18,42,4949 987
36 t59_5_0, dt59_5_0 2058 1,756,2058 18,42,4949 987
37 t59_5_1, dt59_5_1 2058 1,756,2058 18,42,4949 987
38 t59_5_2, dt59_5_2 2058 1,756,2058 18,42,4949 987
39 t59_5_3, dt59_5_3 2058 1,756,2058 18,42,4949 987
40 t59_6_0, dt59_6_0 2058 1,756,2058 18,42,4949 987
41 t59_6_1, dt59_6_1 2058 1,756,2058 18,42,4949 987
42 t59_6_2, dt59_6_2 2058 1,756,2058 18,42,4949 987
43 t59_6_3, dt59_6_3 2058 1,756,2058 18,42,4949 987
44 t59_7_0, dt59_7_0 4116 1,78,1424,2058 12,23,42,497,9821 987
45 t59_7_1, dt59_7_1 4116 1,78,1424,2058 12,23,42,497,9821 987
46 t59_7_2, dt59_7_2 2058 1,756,2058 18,42,4949 987
47 t59_8_0, dt59_8_0 2058 1,756,2058 18,42,4949 987
48 t59_8_1, dt59_8_1 4116 1,78,1424,2058 12,23,42,497,9821 987
49 t59_8_2, dt59_8_2 4116 1,78,1424,2058 12,23,42,497,9821 987
50 t59_9_0, dt59_9_0 2058 1,756,2058 18,42,4949 987
51 t59_9_1, dt59_9_1 2058 1,756,2058 18,42,4949 987
52 t59_10_0, dt59_10_0 4116 1,78,1424,2058 18,42,49,9824 987
53 t59_10_1, dt59_10_1 4116 1,78,1424,2058 18,42,49,9824 987
54 t59_10_2, dt59_10_2 4116 1,78,1424,2058 18,42,49,9824 987
55 t59_10_3, dt59_10_3 4116 1,78,1424,2058 18,42,49,9824 985
56 t59_11_0, dt59_11_0 2058 1,756,2058 18,42,4949 987
57 t59_11_1, dt59_11_1 2058 1,756,2058 18,42,4949 987

Key to the table

Only one line is displayed for both a plane and its dual, an asterisk (*) in the first column indicating that the plane is self-dual. Each line includes the following information and isomorphism invariants for each plane.


/ revised February, 2011