Projective Planes of Order 49 Related to t57


I am currently compiling a list of known projective planes of order 49. As part of this enumeration, here are listed the plane t57 and all known planes of order 49 obtained from it by dualizing and deriving. Coming soon: also planes related by the method of lifting quotients. This list is currently incomplete; check back later for a complete enumeration.

Following the table is a key to the table.


Known Projective Planes of Order 49 Related to t57

Entry Plane |Autgp| Point Orbits Line Orbits 7-rank
1 Translation Plane t57, dual dt57 57624 12,26,49,2401 1,492,986,1969 941
2 t57_0_0, dt57_0_0 2058 1,756,2058 18,42,4949 987
3 t57_0_1, dt57_0_1 2058 1,756,2058 18,42,4949 987
4 t57_0_2, dt57_0_2 2058 1,756,2058 18,42,4949 987
5 t57_0_3, dt57_0_3 2058 1,756,2058 18,42,4949 987
6 t57_0_4, dt57_0_4 2058 1,756,2058 18,42,4949 987
7 t57_0_5, dt57_0_5 2058 1,756,2058 18,42,4949 987
8 t57_0_6, dt57_0_6 2058 1,756,2058 18,42,4949 987
9 t57_0_7, dt57_0_7 2058 1,756,2058 18,42,4949 987
10 t57_1_0, dt57_1_0 2058 1,756,2058 18,42,4949 987
11 t57_1_1, dt57_1_1 2058 1,756,2058 18,42,4949 987
12 t57_1_2, dt57_1_2 2058 1,756,2058 18,42,4949 987
13 t57_1_3, dt57_1_3 2058 1,756,2058 18,42,4949 987
14 t57_1_4, dt57_1_4 2058 1,756,2058 18,42,4949 987
15 t57_1_5, dt57_1_5 2058 1,756,2058 18,42,4949 987
16 t57_1_6, dt57_1_6 2058 1,756,2058 18,42,4949 987
17 t57_1_7, dt57_1_7 2058 1,756,2058 18,42,4949 987
18 t57_2_0, dt57_2_0 2058 1,756,2058 18,42,4949 987
19 t57_2_1, dt57_2_1 2058 1,756,2058 18,42,4949 987
20 t57_2_2, dt57_2_2 2058 1,756,2058 18,42,4949 987
21 t57_2_3, dt57_2_3 2058 1,756,2058 18,42,4949 987
22 t57_2_4, dt57_2_4 2058 1,756,2058 18,42,4949 987
23 t57_2_5, dt57_2_5 2058 1,756,2058 18,42,4949 987
24 t57_2_6, dt57_2_6 2058 1,756,2058 18,42,4949 987
25 t57_2_7, dt57_2_7 2058 1,756,2058 18,42,4949 987
26 t57_3_0, dt57_3_0 2058 1,756,2058 18,42,4949 987
27 t57_3_1, dt57_3_1 2058 1,756,2058 18,42,4949 987
28 t57_3_2, dt57_3_2 2058 1,756,2058 18,42,4949 987
29 t57_3_3, dt57_3_3 2058 1,756,2058 18,42,4949 987
30 t57_3_4, dt57_3_4 2058 1,756,2058 18,42,4949 987
31 t57_3_5, dt57_3_5 2058 1,756,2058 18,42,4949 987
32 t57_3_6, dt57_3_6 2058 1,756,2058 18,42,4949 987
33 t57_3_7, dt57_3_7 2058 1,756,2058 18,42,4949 987
34 t57_4_0, dt57_4_0 2058 1,756,2058 18,42,4949 987
35 t57_4_1, dt57_4_1 2058 1,756,2058 18,42,4949 987
36 t57_4_2, dt57_4_2 2058 1,756,2058 18,42,4949 987
37 t57_4_3, dt57_4_3 2058 1,756,2058 18,42,4949 987
38 t57_4_4, dt57_4_4 2058 1,756,2058 18,42,4949 987
39 t57_4_5, dt57_4_5 2058 1,756,2058 18,42,4949 987
40 t57_4_6, dt57_4_6 2058 1,756,2058 18,42,4949 987
41 t57_4_7, dt57_4_7 2058 1,756,2058 18,42,4949 987
42 t57_5_0, dt57_5_0 2058 1,756,2058 18,42,4949 987
43 t57_5_1, dt57_5_1 2058 1,756,2058 18,42,4949 987
44 t57_5_2, dt57_5_2 2058 1,756,2058 18,42,4949 987
45 t57_5_3, dt57_5_3 2058 1,756,2058 18,42,4949 987
46 t57_5_4, dt57_5_4 2058 1,756,2058 18,42,4949 987
47 t57_5_5, dt57_5_5 2058 1,756,2058 18,42,4949 987
48 t57_5_6, dt57_5_6 2058 1,756,2058 18,42,4949 987
49 t57_5_7, dt57_5_7 2058 1,756,2058 18,42,4949 987
50 t57_6_0, dt57_6_0 2058 1,756,2058 18,42,4949 987
51 t57_6_1, dt57_6_1 2058 1,756,2058 18,42,4949 987
52 t57_6_2, dt57_6_2 2058 1,756,2058 18,42,4949 987
53 t57_6_3, dt57_6_3 2058 1,756,2058 18,42,4949 987
54 t57_6_4, dt57_6_4 2058 1,756,2058 18,42,4949 987
55 t57_6_5, dt57_6_5 2058 1,756,2058 18,42,4949 987
56 t57_6_6, dt57_6_6 2058 1,756,2058 18,42,4949 987
57 t57_6_7, dt57_6_7 2058 1,756,2058 18,42,4949 987
58 t57_7_0, dt57_7_0 2058 1,756,2058 18,42,4949 987
59 t57_7_1, dt57_7_1 2058 1,756,2058 18,42,4949 987
60 t57_7_2, dt57_7_2 2058 1,756,2058 18,42,4949 987
61 t57_7_3, dt57_7_3 2058 1,756,2058 18,42,4949 987
62 t57_7_4, dt57_7_4 2058 1,756,2058 18,42,4949 987
63 t57_7_5, dt57_7_5 2058 1,756,2058 18,42,4949 987
64 t57_7_6, dt57_7_6 2058 1,756,2058 18,42,4949 987
65 t57_7_7, dt57_7_7 2058 1,756,2058 18,42,4949 987
66 t57_8_0, dt57_8_0 2058 1,756,2058 18,42,4949 987
67 t57_8_1, dt57_8_1 2058 1,756,2058 18,42,4949 987
68 t57_8_2, dt57_8_2 2058 1,756,2058 18,42,4949 987
69 t57_8_3, dt57_8_3 2058 1,756,2058 18,42,4949 987
70 t57_8_4, dt57_8_4 2058 1,756,2058 18,42,4949 987
71 t57_8_5, dt57_8_5 2058 1,756,2058 18,42,4949 987
72 t57_8_6, dt57_8_6 2058 1,756,2058 18,42,4949 987
73 t57_8_7, dt57_8_7 2058 1,756,2058 18,42,4949 987
74 t57_9_0, dt57_9_0 2058 1,756,2058 18,42,4949 987
75 t57_9_1, dt57_9_1 2058 1,756,2058 18,42,4949 987
76 t57_9_2, dt57_9_2 2058 1,756,2058 18,42,4949 987
77 t57_9_3, dt57_9_3 2058 1,756,2058 18,42,4949 987
78 t57_10_0, dt57_10_0 2058 1,756,2058 18,42,4949 987
79 t57_10_1, dt57_10_1 2058 1,756,2058 18,42,4949 987
80 t57_10_2, dt57_10_2 2058 1,756,2058 18,42,4949 987
81 t57_10_3, dt57_10_3 2058 1,756,2058 18,42,4949 987
82 t57_11_0, dt57_11_0 2058 1,756,2058 18,42,4949 987
83 t57_11_1, dt57_11_1 2058 1,756,2058 18,42,4949 987
84 t57_11_2, dt57_11_2 2058 1,756,2058 18,42,4949 987
85 t57_11_3, dt57_11_3 2058 1,756,2058 18,42,4949 987
86 t57_12_0, dt57_12_0 2058 1,756,2058 18,42,4949 987
87 t57_12_1, dt57_12_1 2058 1,756,2058 18,42,4949 987
88 t57_12_2, dt57_12_2 2058 1,756,2058 18,42,4949 987
89 t57_12_3, dt57_12_3 2058 1,756,2058 18,42,4949 987
90 t57_13_0, dt57_13_0 2058 1,756,2058 18,42,4949 987
91 t57_13_1, dt57_13_1 2058 1,756,2058 18,42,4949 987
92 t57_13_2, dt57_13_2 2058 1,756,2058 18,42,4949 987
93 t57_13_3, dt57_13_3 2058 1,756,2058 18,42,4949 987
94 t57_14_0, dt57_14_0 2058 1,756,2058 18,42,4949 987
95 t57_14_1, dt57_14_1 2058 1,756,2058 18,42,4949 987
96 t57_14_2, dt57_14_2 2058 1,756,2058 18,42,4949 987
97 t57_14_3, dt57_14_3 2058 1,756,2058 18,42,4949 987
98 t57_15_0, dt57_15_0 2058 1,756,2058 18,42,4949 987
99 t57_15_1, dt57_15_1 2058 1,756,2058 18,42,4949 987
100 t57_16_0, dt57_16_0 2058 1,756,2058 18,42,4949 987
101 t57_16_1, dt57_16_1 2058 1,756,2058 18,42,4949 987

Key to the table

Only one line is displayed for both a plane and its dual, an asterisk (*) in the first column indicating that the plane is self-dual. Each line includes the following information and isomorphism invariants for each plane.


/ revised February, 2011