Projective Planes of Order 49 Related to t56


I am currently compiling a list of known projective planes of order 49. As part of this enumeration, here are listed the plane t56 and all known planes of order 49 obtained from it by dualizing and deriving. Coming soon: also planes related by the method of lifting quotients. This list is currently incomplete; check back later for a complete enumeration.

Following the table is a key to the table.


Known Projective Planes of Order 49 Related to t56

Entry Plane |Autgp| Point Orbits Line Orbits 7-rank
1 Translation Plane t56, dual dt56 115248 12,24,42,84,2401 1,492,984,1962,3924 941
2 t56_0_0, dt56_0_0 2058 1,756,2058 18,42,4949 987
3 t56_0_1, dt56_0_1 2058 1,756,2058 18,42,4949 987
4 t56_0_2, dt56_0_2 2058 1,756,2058 18,42,4949 987
5 t56_0_3, dt56_0_3 2058 1,756,2058 18,42,4949 987
6 t56_0_4, dt56_0_4 2058 1,756,2058 18,42,4949 987
7 t56_0_5, dt56_0_5 2058 1,756,2058 18,42,4949 987
8 t56_0_6, dt56_0_6 2058 1,756,2058 18,42,4949 987
9 t56_0_7, dt56_0_7 2058 1,756,2058 18,42,4949 987
10 t56_1_0, dt56_1_0 2058 1,756,2058 18,42,4949 987
11 t56_1_1, dt56_1_1 2058 1,756,2058 18,42,4949 987
12 t56_1_2, dt56_1_2 2058 1,756,2058 18,42,4949 987
13 t56_1_3, dt56_1_3 2058 1,756,2058 18,42,4949 987
14 t56_1_4, dt56_1_4 2058 1,756,2058 18,42,4949 987
15 t56_1_5, dt56_1_5 2058 1,756,2058 18,42,4949 987
16 t56_1_6, dt56_1_6 2058 1,756,2058 18,42,4949 987
17 t56_1_7, dt56_1_7 2058 1,756,2058 18,42,4949 987
18 t56_2_0, dt56_2_0 2058 1,756,2058 18,42,4949 987
19 t56_2_1, dt56_2_1 2058 1,756,2058 18,42,4949 987
20 t56_2_2, dt56_2_2 2058 1,756,2058 18,42,4949 987
21 t56_2_3, dt56_2_3 2058 1,756,2058 18,42,4949 987
22 t56_2_4, dt56_2_4 2058 1,756,2058 18,42,4949 987
23 t56_2_5, dt56_2_5 2058 1,756,2058 18,42,4949 987
24 t56_2_6, dt56_2_6 2058 1,756,2058 18,42,4949 987
25 t56_2_7, dt56_2_7 2058 1,756,2058 18,42,4949 987
26 t56_3_0, dt56_3_0 2058 1,756,2058 18,42,4949 987
27 t56_3_1, dt56_3_1 2058 1,756,2058 18,42,4949 987
28 t56_3_2, dt56_3_2 2058 1,756,2058 18,42,4949 987
29 t56_3_3, dt56_3_3 2058 1,756,2058 18,42,4949 987
30 t56_3_4, dt56_3_4 2058 1,756,2058 18,42,4949 987
31 t56_3_5, dt56_3_5 2058 1,756,2058 18,42,4949 987
32 t56_3_6, dt56_3_6 2058 1,756,2058 18,42,4949 987
33 t56_3_7, dt56_3_7 2058 1,756,2058 18,42,4949 987
34 t56_4_0, dt56_4_0 2058 1,756,2058 18,42,4949 987
35 t56_4_1, dt56_4_1 2058 1,756,2058 18,42,4949 987
36 t56_4_2, dt56_4_2 2058 1,756,2058 18,42,4949 987
37 t56_4_3, dt56_4_3 2058 1,756,2058 18,42,4949 987
38 t56_5_0, dt56_5_0 2058 1,756,2058 18,42,4949 987
39 t56_5_1, dt56_5_1 2058 1,756,2058 18,42,4949 987
40 t56_5_2, dt56_5_2 2058 1,756,2058 18,42,4949 987
41 t56_5_3, dt56_5_3 2058 1,756,2058 18,42,4949 987
42 t56_6_0, dt56_6_0 2058 1,756,2058 18,42,4949 987
43 t56_6_1, dt56_6_1 2058 1,756,2058 18,42,4949 987
44 t56_7_0, dt56_7_0 2058 1,756,2058 18,42,4949 987
45 t56_7_1, dt56_7_1 2058 1,756,2058 18,42,4949 987
46 t56_8_0, dt56_8_0 2058 1,756,2058 18,42,4949 987
47 t56_8_1, dt56_8_1 2058 1,756,2058 18,42,4949 987
48 t56_9_0, dt56_9_0 2058 1,756,2058 18,42,4949 987
49 t56_9_1, dt56_9_1 2058 1,756,2058 18,42,4949 987
50 t56_10_0, dt56_10_0 2058 1,756,2058 18,42,4949 987
51 t56_11_0, dt56_11_0 2058 1,756,2058 18,42,4949 987

Key to the table

Only one line is displayed for both a plane and its dual, an asterisk (*) in the first column indicating that the plane is self-dual. Each line includes the following information and isomorphism invariants for each plane.


/ revised February, 2011