Projective Planes of Order 49 Related to t51


I am currently compiling a list of known projective planes of order 49. As part of this enumeration, here are listed the plane t51 and all known planes of order 49 obtained from it by dualizing and deriving. Coming soon: also planes related by the method of lifting quotients. This list is currently incomplete; check back later for a complete enumeration.

Following the table is a key to the table.


Known Projective Planes of Order 49 Related to t51

Entry Plane |Autgp| Point Orbits Line Orbits 7-rank
1 Translation Plane t51, dual dt51 115248 14,27,42,83,2401 1,494,987,1962,3923 941
2 t51_0_0, dt51_0_0 2058 1,756,2058 18,42,4949 987
3 t51_0_1, dt51_0_1 2058 1,756,2058 18,42,4949 987
4 t51_0_2, dt51_0_2 2058 1,756,2058 18,42,4949 987
5 t51_0_3, dt51_0_3 2058 1,756,2058 18,42,4949 987
6 t51_0_4, dt51_0_4 2058 1,756,2058 18,42,4949 987
7 t51_0_5, dt51_0_5 2058 1,756,2058 18,42,4949 987
8 t51_0_6, dt51_0_6 2058 1,756,2058 18,42,4949 987
9 t51_0_7, dt51_0_7 2058 1,756,2058 18,42,4949 987
10 t51_1_0, dt51_1_0 2058 1,756,2058 18,42,4949 987
11 t51_1_1, dt51_1_1 2058 1,756,2058 18,42,4949 987
12 t51_1_2, dt51_1_2 2058 1,756,2058 18,42,4949 987
13 t51_1_3, dt51_1_3 2058 1,756,2058 18,42,4949 987
14 t51_1_4, dt51_1_4 2058 1,756,2058 18,42,4949 987
15 t51_1_5, dt51_1_5 2058 1,756,2058 18,42,4949 987
16 t51_1_6, dt51_1_6 2058 1,756,2058 18,42,4949 987
17 t51_1_7, dt51_1_7 2058 1,756,2058 18,42,4949 987
18 t51_2_0, dt51_2_0 2058 1,756,2058 18,42,4949 987
19 t51_2_1, dt51_2_1 2058 1,756,2058 18,42,4949 987
20 t51_2_2, dt51_2_2 2058 1,756,2058 18,42,4949 987
21 t51_2_3, dt51_2_3 2058 1,756,2058 18,42,4949 987
22 t51_2_4, dt51_2_4 2058 1,756,2058 18,42,4949 987
23 t51_2_5, dt51_2_5 2058 1,756,2058 18,42,4949 987
24 t51_2_6, dt51_2_6 2058 1,756,2058 18,42,4949 987
25 t51_2_7, dt51_2_7 2058 1,756,2058 18,42,4949 987
26 t51_3_0, dt51_3_0 2058 1,756,2058 18,42,4949 987
27 t51_3_1, dt51_3_1 2058 1,756,2058 18,42,4949 987
28 t51_3_2, dt51_3_2 2058 1,756,2058 18,42,4949 987
29 t51_3_3, dt51_3_3 2058 1,756,2058 18,42,4949 987
30 t51_4_0, dt51_4_0 2058 1,756,2058 18,42,4949 987
31 t51_4_1, dt51_4_1 2058 1,756,2058 18,42,4949 987
32 t51_4_2, dt51_4_2 2058 1,756,2058 18,42,4949 987
33 t51_4_3, dt51_4_3 2058 1,756,2058 18,42,4949 987
34 t51_5_0, dt51_5_0 2058 1,756,2058 18,42,4949 987
35 t51_5_1, dt51_5_1 2058 1,756,2058 18,42,4949 987
36 t51_6_0, dt51_6_0 2058 1,756,2058 18,42,4949 987
37 t51_6_1, dt51_6_1 2058 1,756,2058 18,42,4949 987
38 t51_7_0, dt51_7_0 2058 1,756,2058 18,42,4949 987
39 t51_7_1, dt51_7_1 2058 1,756,2058 18,42,4949 987
40 t51_8_0, dt51_8_0 2058 1,756,2058 18,42,4949 987
41 t51_8_1, dt51_8_1 2058 1,756,2058 18,42,4949 987
42 t51_9_0, dt51_9_0 2058 1,756,2058 18,42,4949 987
43 t51_9_1, dt51_9_1 2058 1,756,2058 18,42,4949 987
44 t51_10_0, dt51_10_0 2058 1,756,2058 18,42,4949 987
45 t51_10_1, dt51_10_1 2058 1,756,2058 18,42,4949 987
46 t51_11_0, dt51_11_0 2058 1,756,2058 18,42,4949 987
47 t51_11_1, dt51_11_1 2058 1,756,2058 18,42,4949 987
48 t51_12_0, dt51_12_0 2058 1,756,2058 18,42,4949 987
49 t51_13_0, dt51_13_0 2058 1,756,2058 18,42,4949 987
50 t51_14_0, dt51_14_0 2058 1,756,2058 18,42,4949 987
51 t51_15_0, dt51_15_0 2058 1,756,2058 18,42,4949 987

Key to the table

Only one line is displayed for both a plane and its dual, an asterisk (*) in the first column indicating that the plane is self-dual. Each line includes the following information and isomorphism invariants for each plane.


/ revised February, 2011