Projective Planes of Order 49 Related to t49


I am currently compiling a list of known projective planes of order 49. As part of this enumeration, here are listed the plane t49 and all known planes of order 49 obtained from it by dualizing and deriving. Coming soon: also planes related by the method of lifting quotients. This list is currently incomplete; check back later for a complete enumeration.

Following the table is a key to the table.


Known Projective Planes of Order 49 Related to t49

Entry Plane |Autgp| Point Orbits Line Orbits 7-rank
1 Translation Plane t49, dual dt49 172872 22,4,65,12,2401 1,982,196,2945,588 939
2 t49_0_0, dt49_0_0 2058 1,756,2058 18,42,4949 987
3 t49_0_1, dt49_0_1 2058 1,756,2058 18,42,4949 987
4 t49_0_2, dt49_0_2 2058 1,756,2058 18,42,4949 987
5 t49_0_3, dt49_0_3 2058 1,756,2058 18,42,4949 987
6 t49_0_4, dt49_0_4 2058 1,756,2058 18,42,4949 987
7 t49_0_5, dt49_0_5 2058 1,756,2058 18,42,4949 987
8 t49_0_6, dt49_0_6 2058 1,756,2058 18,42,4949 987
9 t49_0_7, dt49_0_7 2058 1,756,2058 18,42,4949 987
10 t49_1_0, dt49_1_0 4116 1,78,1424,2058 12,23,42,497,9821 987
11 t49_1_1, dt49_1_1 2058 1,756,2058 18,42,4949 987
12 t49_1_2, dt49_1_2 2058 1,756,2058 18,42,4949 987
13 t49_1_3, dt49_1_3 2058 1,756,2058 18,42,4949 987
14 t49_1_4, dt49_1_4 4116 1,78,1424,2058 12,23,42,497,9821 987
15 t49_2_0, dt49_2_0 2058 1,756,2058 18,42,4949 987
16 t49_2_1, dt49_2_1 2058 1,756,2058 18,42,4949 987
17 t49_2_2, dt49_2_2 2058 1,756,2058 18,42,4949 987
18 t49_2_3, dt49_2_3 2058 1,756,2058 18,42,4949 987
19 t49_3_0, dt49_3_0 2058 1,756,2058 18,42,4949 987
20 t49_3_1, dt49_3_1 2058 1,756,2058 18,42,4949 987
21 t49_3_2, dt49_3_2 2058 1,756,2058 18,42,4949 987
22 t49_3_3, dt49_3_3 2058 1,756,2058 18,42,4949 987
23 t49_4_0, dt49_4_0 2058 1,756,2058 18,42,4949 987
24 t49_4_1, dt49_4_1 2058 1,756,2058 18,42,4949 987
25 t49_4_2, dt49_4_2 2058 1,756,2058 18,42,4949 987
26 t49_4_3, dt49_4_3 2058 1,756,2058 18,42,4949 987
27 t49_5_0, dt49_5_0 2058 1,756,2058 18,42,4949 987
28 t49_5_1, dt49_5_1 2058 1,756,2058 18,42,4949 987
29 t49_5_2, dt49_5_2 2058 1,756,2058 18,42,4949 987
30 t49_5_3, dt49_5_3 2058 1,756,2058 18,42,4949 987
31 t49_6_0, dt49_6_0 2058 1,756,2058 18,42,4949 987
32 t49_6_1, dt49_6_1 2058 1,756,2058 18,42,4949 987
33 t49_6_2, dt49_6_2 6174 1,78,2116,2058 12,32,42,497,14714 985
34 t49_6_3, dt49_6_3 6174 1,78,2116,2058 12,32,42,497,14714 987
35 t49_7_0, dt49_7_0 12348 1,72,143,212,427,2058 12,6,42,49,983,1472,2946 987
36 t49_7_1, dt49_7_1 2058 1,756,2058 18,42,4949 987
37 t49_7_2, dt49_7_2 12348 1,72,143,212,427,2058 12,6,42,49,983,1472,2946 987
38 t49_8_0, dt49_8_0 2058 1,756,2058 18,42,4949 987
39 t49_8_1, dt49_8_1 6174 1,78,2116,2058 12,32,42,497,14714 987

Key to the table

Only one line is displayed for both a plane and its dual, an asterisk (*) in the first column indicating that the plane is self-dual. Each line includes the following information and isomorphism invariants for each plane.


/ revised February, 2011