Projective Planes of Order 49 Related to t48


I am currently compiling a list of known projective planes of order 49. As part of this enumeration, here are listed the plane t48 and all known planes of order 49 obtained from it by dualizing and deriving. Coming soon: also planes related by the method of lifting quotients. This list is currently incomplete; check back later for a complete enumeration.

Following the table is a key to the table.


Known Projective Planes of Order 49 Related to t48

Entry Plane |Autgp| Point Orbits Line Orbits 7-rank
1 Translation Plane t48, dual dt48 57624 14,27,48,2401 1,494,987,1968 941
2 t48_0_0, dt48_0_0 2058 1,756,2058 18,42,4949 987
3 t48_0_1, dt48_0_1 2058 1,756,2058 18,42,4949 987
4 t48_0_2, dt48_0_2 2058 1,756,2058 18,42,4949 987
5 t48_0_3, dt48_0_3 2058 1,756,2058 18,42,4949 987
6 t48_0_4, dt48_0_4 2058 1,756,2058 18,42,4949 987
7 t48_0_5, dt48_0_5 2058 1,756,2058 18,42,4949 987
8 t48_0_6, dt48_0_6 2058 1,756,2058 18,42,4949 987
9 t48_0_7, dt48_0_7 2058 1,756,2058 18,42,4949 987
10 t48_1_0, dt48_1_0 2058 1,756,2058 18,42,4949 987
11 t48_1_1, dt48_1_1 2058 1,756,2058 18,42,4949 987
12 t48_1_2, dt48_1_2 2058 1,756,2058 18,42,4949 987
13 t48_1_3, dt48_1_3 2058 1,756,2058 18,42,4949 987
14 t48_1_4, dt48_1_4 2058 1,756,2058 18,42,4949 987
15 t48_1_5, dt48_1_5 2058 1,756,2058 18,42,4949 987
16 t48_1_6, dt48_1_6 2058 1,756,2058 18,42,4949 987
17 t48_1_7, dt48_1_7 2058 1,756,2058 18,42,4949 987
18 t48_2_0, dt48_2_0 2058 1,756,2058 18,42,4949 987
19 t48_2_1, dt48_2_1 2058 1,756,2058 18,42,4949 987
20 t48_2_2, dt48_2_2 2058 1,756,2058 18,42,4949 987
21 t48_2_3, dt48_2_3 2058 1,756,2058 18,42,4949 987
22 t48_2_4, dt48_2_4 2058 1,756,2058 18,42,4949 987
23 t48_2_5, dt48_2_5 2058 1,756,2058 18,42,4949 987
24 t48_2_6, dt48_2_6 2058 1,756,2058 18,42,4949 987
25 t48_2_7, dt48_2_7 2058 1,756,2058 18,42,4949 987
26 t48_3_0, dt48_3_0 2058 1,756,2058 18,42,4949 987
27 t48_3_1, dt48_3_1 2058 1,756,2058 18,42,4949 987
28 t48_3_2, dt48_3_2 2058 1,756,2058 18,42,4949 987
29 t48_3_3, dt48_3_3 2058 1,756,2058 18,42,4949 987
30 t48_3_4, dt48_3_4 2058 1,756,2058 18,42,4949 987
31 t48_3_5, dt48_3_5 2058 1,756,2058 18,42,4949 987
32 t48_3_6, dt48_3_6 2058 1,756,2058 18,42,4949 987
33 t48_3_7, dt48_3_7 2058 1,756,2058 18,42,4949 987
34 t48_4_0, dt48_4_0 2058 1,756,2058 18,42,4949 987
35 t48_4_1, dt48_4_1 2058 1,756,2058 18,42,4949 987
36 t48_4_2, dt48_4_2 2058 1,756,2058 18,42,4949 987
37 t48_4_3, dt48_4_3 2058 1,756,2058 18,42,4949 987
38 t48_4_4, dt48_4_4 2058 1,756,2058 18,42,4949 987
39 t48_4_5, dt48_4_5 2058 1,756,2058 18,42,4949 987
40 t48_4_6, dt48_4_6 2058 1,756,2058 18,42,4949 987
41 t48_4_7, dt48_4_7 2058 1,756,2058 18,42,4949 987
42 t48_5_0, dt48_5_0 2058 1,756,2058 18,42,4949 987
43 t48_5_1, dt48_5_1 2058 1,756,2058 18,42,4949 987
44 t48_5_2, dt48_5_2 2058 1,756,2058 18,42,4949 987
45 t48_5_3, dt48_5_3 2058 1,756,2058 18,42,4949 987
46 t48_5_4, dt48_5_4 2058 1,756,2058 18,42,4949 987
47 t48_5_5, dt48_5_5 2058 1,756,2058 18,42,4949 987
48 t48_5_6, dt48_5_6 2058 1,756,2058 18,42,4949 987
49 t48_5_7, dt48_5_7 2058 1,756,2058 18,42,4949 987
50 t48_6_0, dt48_6_0 2058 1,756,2058 18,42,4949 987
51 t48_6_1, dt48_6_1 2058 1,756,2058 18,42,4949 987
52 t48_6_2, dt48_6_2 2058 1,756,2058 18,42,4949 987
53 t48_6_3, dt48_6_3 2058 1,756,2058 18,42,4949 987
54 t48_6_4, dt48_6_4 2058 1,756,2058 18,42,4949 987
55 t48_6_5, dt48_6_5 2058 1,756,2058 18,42,4949 987
56 t48_6_6, dt48_6_6 2058 1,756,2058 18,42,4949 987
57 t48_6_7, dt48_6_7 2058 1,756,2058 18,42,4949 987
58 t48_7_0, dt48_7_0 2058 1,756,2058 18,42,4949 987
59 t48_7_1, dt48_7_1 2058 1,756,2058 18,42,4949 987
60 t48_7_2, dt48_7_2 2058 1,756,2058 18,42,4949 987
61 t48_7_3, dt48_7_3 2058 1,756,2058 18,42,4949 987
62 t48_7_4, dt48_7_4 2058 1,756,2058 18,42,4949 987
63 t48_7_5, dt48_7_5 2058 1,756,2058 18,42,4949 987
64 t48_7_6, dt48_7_6 2058 1,756,2058 18,42,4949 987
65 t48_7_7, dt48_7_7 2058 1,756,2058 18,42,4949 987
66 t48_8_0, dt48_8_0 2058 1,756,2058 18,42,4949 987
67 t48_8_1, dt48_8_1 2058 1,756,2058 18,42,4949 987
68 t48_8_2, dt48_8_2 2058 1,756,2058 18,42,4949 987
69 t48_8_3, dt48_8_3 2058 1,756,2058 18,42,4949 987
70 t48_9_0, dt48_9_0 2058 1,756,2058 18,42,4949 987
71 t48_9_1, dt48_9_1 2058 1,756,2058 18,42,4949 987
72 t48_9_2, dt48_9_2 2058 1,756,2058 18,42,4949 987
73 t48_9_3, dt48_9_3 2058 1,756,2058 18,42,4949 987
74 t48_10_0, dt48_10_0 2058 1,756,2058 18,42,4949 987
75 t48_10_1, dt48_10_1 2058 1,756,2058 18,42,4949 987
76 t48_10_2, dt48_10_2 2058 1,756,2058 18,42,4949 987
77 t48_10_3, dt48_10_3 2058 1,756,2058 18,42,4949 987
78 t48_11_0, dt48_11_0 2058 1,756,2058 18,42,4949 987
79 t48_11_1, dt48_11_1 2058 1,756,2058 18,42,4949 987
80 t48_11_2, dt48_11_2 2058 1,756,2058 18,42,4949 987
81 t48_11_3, dt48_11_3 2058 1,756,2058 18,42,4949 987
82 t48_12_0, dt48_12_0 2058 1,756,2058 18,42,4949 987
83 t48_12_1, dt48_12_1 2058 1,756,2058 18,42,4949 987
84 t48_12_2, dt48_12_2 2058 1,756,2058 18,42,4949 987
85 t48_12_3, dt48_12_3 2058 1,756,2058 18,42,4949 987
86 t48_13_0, dt48_13_0 2058 1,756,2058 18,42,4949 987
87 t48_13_1, dt48_13_1 2058 1,756,2058 18,42,4949 987
88 t48_13_2, dt48_13_2 2058 1,756,2058 18,42,4949 987
89 t48_13_3, dt48_13_3 2058 1,756,2058 18,42,4949 987
90 t48_14_0, dt48_14_0 2058 1,756,2058 18,42,4949 987
91 t48_14_1, dt48_14_1 2058 1,756,2058 18,42,4949 987
92 t48_14_2, dt48_14_2 2058 1,756,2058 18,42,4949 987
93 t48_14_3, dt48_14_3 2058 1,756,2058 18,42,4949 987
94 t48_15_0, dt48_15_0 2058 1,756,2058 18,42,4949 987
95 t48_15_1, dt48_15_1 2058 1,756,2058 18,42,4949 987
96 t48_16_0, dt48_16_0 2058 1,756,2058 18,42,4949 987
97 t48_16_1, dt48_16_1 2058 1,756,2058 18,42,4949 987
98 t48_17_0, dt48_17_0 2058 1,756,2058 18,42,4949 987
99 t48_17_1, dt48_17_1 2058 1,756,2058 18,42,4949 987
100 t48_18_0, dt48_18_0 2058 1,756,2058 18,42,4949 987
101 t48_18_1, dt48_18_1 2058 1,756,2058 18,42,4949 987

Key to the table

Only one line is displayed for both a plane and its dual, an asterisk (*) in the first column indicating that the plane is self-dual. Each line includes the following information and isomorphism invariants for each plane.


/ revised February, 2011