Projective Planes of Order 49 Related to t47


I am currently compiling a list of known projective planes of order 49. As part of this enumeration, here are listed the plane t47 and all known planes of order 49 obtained from it by dualizing and deriving. Coming soon: also planes related by the method of lifting quotients. This list is currently incomplete; check back later for a complete enumeration.

Following the table is a key to the table.


Known Projective Planes of Order 49 Related to t47

Entry Plane |Autgp| Point Orbits Line Orbits 7-rank
1 Translation Plane t47, dual dt47 230496 23,45,8,16,2401 1,983,1965,392,784 933
2 t47_0_0, dt47_0_0 2058 1,756,2058 18,42,4949 987
3 t47_0_1, dt47_0_1 2058 1,756,2058 18,42,4949 987
4 t47_0_2, dt47_0_2 2058 1,756,2058 18,42,4949 987
5 t47_0_3, dt47_0_3 2058 1,756,2058 18,42,4949 987
6 t47_0_4, dt47_0_4 2058 1,756,2058 18,42,4949 987
7 t47_0_5, dt47_0_5 2058 1,756,2058 18,42,4949 987
8 t47_0_6, dt47_0_6 2058 1,756,2058 18,42,4949 987
9 t47_0_7, dt47_0_7 2058 1,756,2058 18,42,4949 987
10 t47_1_0, dt47_1_0 2058 1,756,2058 18,42,4949 987
11 t47_1_1, dt47_1_1 2058 1,756,2058 18,42,4949 987
12 t47_1_2, dt47_1_2 2058 1,756,2058 18,42,4949 987
13 t47_1_3, dt47_1_3 4116 1,78,1424,2058 12,23,42,497,9821 987
14 t47_1_4, dt47_1_4 4116 1,78,1424,2058 12,23,42,497,9821 985
15 t47_2_0, dt47_2_0 2058 1,756,2058 18,42,4949 987
16 t47_2_1, dt47_2_1 2058 1,756,2058 18,42,4949 987
17 t47_3_0, dt47_3_0 2058 1,756,2058 18,42,4949 987
18 t47_3_1, dt47_3_1 2058 1,756,2058 18,42,4949 987
19 t47_4_0, dt47_4_0 2058 1,756,2058 18,42,4949 987
20 t47_4_1, dt47_4_1 2058 1,756,2058 18,42,4949 987
21 t47_5_0, dt47_5_0 2058 1,756,2058 18,42,4949 987
22 t47_5_1, dt47_5_1 2058 1,756,2058 18,42,4949 987
23 t47_6_0, dt47_6_0 2058 1,756,2058 18,42,4949 987
24 t47_6_1, dt47_6_1 2058 1,756,2058 18,42,4949 987
25 t47_7_0, dt47_7_0 2058 1,756,2058 18,42,4949 987
26 t47_8_0, dt47_8_0 2058 1,756,2058 18,42,4949 981
27 t47_9_0, dt47_9_0 2058 1,756,2058 18,42,4949 987

Key to the table

Only one line is displayed for both a plane and its dual, an asterisk (*) in the first column indicating that the plane is self-dual. Each line includes the following information and isomorphism invariants for each plane.


/ revised February, 2011