Projective Planes of Order 49 Related to t42


I am currently compiling a list of known projective planes of order 49. As part of this enumeration, here are listed the plane t42 and all known planes of order 49 obtained from it by dualizing and deriving. Coming soon: also planes related by the method of lifting quotients. This list is currently incomplete; check back later for a complete enumeration.

Following the table is a key to the table.


Known Projective Planes of Order 49 Related to t42

Entry Plane |Autgp| Point Orbits Line Orbits 7-rank
1 Translation Plane t42, dual dt42 230496 23,4,85,2401 1,983,196,3925 939
2 t42_0_0, dt42_0_0 2058 1
3 t42_0_1, dt42_0_1 2058 1,756,2058 18,42,4949 987
4 t42_0_2, dt42_0_2 2058 1,756,2058 18,42,4949 987
5 t42_0_3, dt42_0_3 2058 1,756,2058 18,42,4949 987
6 t42_1_0, dt42_1_0 4116 1,78,1424,2058 12,23,42,497,9821 987
7 t42_1_1, dt42_1_1 2058 1,756,2058 18,42,4949 987
8 t42_1_2, dt42_1_2 2058 1,756,2058 18,42,4949 987
9 t42_1_3, dt42_1_3 2058 1,756,2058 18,42,4949 987
10 t42_1_4, dt42_1_4 4116 1,78,1424,2058 12,23,42,497,9821 987
11 t42_2_0, dt42_2_0 2058 1,756,2058 18,42,4949 987
12 t42_2_1, dt42_2_1 2058 1,756,2058 18,42,4949 987
13 t42_2_2, dt42_2_2 2058 1,756,2058 18,42,4949 987
14 t42_2_3, dt42_2_3 2058 1,756,2058 18,42,4949 987
15 t42_3_0, dt42_3_0 2058 1,756,2058 18,42,4949 987
16 t42_3_1, dt42_3_1 2058 1,756,2058 18,42,4949 987
17 t42_3_2, dt42_3_2 2058 1,756,2058 18,42,4949 987
18 t42_3_3, dt42_3_3 2058 1,756,2058 18,42,4949 987
19 t42_4_0, dt42_4_0 2058 1,756,2058 18,42,4949 987
20 t42_4_1, dt42_4_1 2058 1,756,2058 18,42,4949 987
21 t42_4_2, dt42_4_2 2058 1,756,2058 18,42,4949 987
22 t42_4_3, dt42_4_3 2058 1,756,2058 18,42,4949 987
23 t42_5_0, dt42_5_0 2058 1,756,2058 18,42,4949 987
24 t42_5_1, dt42_5_1 2058 1,756,2058 18,42,4949 987
25 t42_6_0, dt42_6_0 2058 1,756,2058 18,42,4949 987
26 t42_7_0, dt42_7_0 2058 1,756,2058 18,42,4949 987
27 t42_8_0, dt42_8_0 2058 1,756,2058 18,42,4949 987

Key to the table

Only one line is displayed for both a plane and its dual, an asterisk (*) in the first column indicating that the plane is self-dual. Each line includes the following information and isomorphism invariants for each plane.


/ revised February, 2011