Projective Planes of Order 49 Related to t41


I am currently compiling a list of known projective planes of order 49. As part of this enumeration, here are listed the plane t41 and all known planes of order 49 obtained from it by dualizing and deriving. Coming soon: also planes related by the method of lifting quotients. This list is currently incomplete; check back later for a complete enumeration.

Following the table is a key to the table.


Known Projective Planes of Order 49 Related to t41

Entry Plane |Autgp| Point Orbits Line Orbits 7-rank
1 Translation Plane t41, dual dt41 28812 12,224,2401 1,492,9824 941
2 t41_0_0, dt41_0_0 2058 1,756,2058 18,42,4949 987
3 t41_0_1, dt41_0_1 2058 1,756,2058 18,42,4949 987
4 t41_0_2, dt41_0_2 2058 1,756,2058 18,42,4949 987
5 t41_0_3, dt41_0_3 2058 1,756,2058 18,42,4949 987
6 t41_0_4, dt41_0_4 2058 1,756,2058 18,42,4949 987
7 t41_0_5, dt41_0_5 2058 1,756,2058 18,42,4949 987
8 t41_0_6, dt41_0_6 2058 1,756,2058 18,42,4949 987
9 t41_0_7, dt41_0_7 2058 1,756,2058 18,42,4949 987
10 t41_1_0, dt41_1_0 2058 1,756,2058 18,42,4949 987
11 t41_1_1, dt41_1_1 2058 1,756,2058 18,42,4949 987
12 t41_1_2, dt41_1_2 2058 1,756,2058 18,42,4949 987
13 t41_1_3, dt41_1_3 2058 1,756,2058 18,42,4949 987
14 t41_1_4, dt41_1_4 2058 1,756,2058 18,42,4949 987
15 t41_1_5, dt41_1_5 2058 1,756,2058 18,42,4949 987
16 t41_1_6, dt41_1_6 2058 1,756,2058 18,42,4949 987
17 t41_1_7, dt41_1_7 2058 1,756,2058 18,42,4949 987
18 t41_2_0, dt41_2_0 2058 1,756,2058 18,42,4949 987
19 t41_2_1, dt41_2_1 2058 1,756,2058 18,42,4949 987
20 t41_2_2, dt41_2_2 2058 1,756,2058 18,42,4949 987
21 t41_2_3, dt41_2_3 2058 1,756,2058 18,42,4949 987
22 t41_2_4, dt41_2_4 2058 1,756,2058 18,42,4949 987
23 t41_2_5, dt41_2_5 2058 1,756,2058 18,42,4949 987
24 t41_2_6, dt41_2_6 2058 1,756,2058 18,42,4949 987
25 t41_2_7, dt41_2_7 2058 1,756,2058 18,42,4949 987
26 t41_3_0, dt41_3_0 2058 1,756,2058 18,42,4949 987
27 t41_3_1, dt41_3_1 2058 1,756,2058 18,42,4949 987
28 t41_3_2, dt41_3_2 2058 1,756,2058 18,42,4949 987
29 t41_3_3, dt41_3_3 2058 1,756,2058 18,42,4949 987
30 t41_3_4, dt41_3_4 2058 1,756,2058 18,42,4949 987
31 t41_3_5, dt41_3_5 2058 1,756,2058 18,42,4949 987
32 t41_3_6, dt41_3_6 2058 1,756,2058 18,42,4949 987
33 t41_3_7, dt41_3_7 2058 1,756,2058 18,42,4949 987
34 t41_4_0, dt41_4_0 2058 1,756,2058 18,42,4949 987
35 t41_4_1, dt41_4_1 2058 1,756,2058 18,42,4949 987
36 t41_4_2, dt41_4_2 2058 1,756,2058 18,42,4949 987
37 t41_4_3, dt41_4_3 2058 1,756,2058 18,42,4949 987
38 t41_4_4, dt41_4_4 2058 1,756,2058 18,42,4949 987
39 t41_4_5, dt41_4_5 2058 1,756,2058 18,42,4949 987
40 t41_4_6, dt41_4_6 2058 1,756,2058 18,42,4949 987
41 t41_4_7, dt41_4_7 2058 1,756,2058 18,42,4949 987
42 t41_5_0, dt41_5_0 2058 1,756,2058 18,42,4949 987
43 t41_5_1, dt41_5_1 2058 1,756,2058 18,42,4949 987
44 t41_5_2, dt41_5_2 2058 1,756,2058 18,42,4949 987
45 t41_5_3, dt41_5_3 2058 1,756,2058 18,42,4949 987
46 t41_5_4, dt41_5_4 2058 1,756,2058 18,42,4949 987
47 t41_5_5, dt41_5_5 2058 1,756,2058 18,42,4949 987
48 t41_5_6, dt41_5_6 2058 1,756,2058 18,42,4949 987
49 t41_5_7, dt41_5_7 2058 1,756,2058 18,42,4949 987
50 t41_6_0, dt41_6_0 2058 1,756,2058 18,42,4949 987
51 t41_6_1, dt41_6_1 2058 1,756,2058 18,42,4949 987
52 t41_6_2, dt41_6_2 2058 1,756,2058 18,42,4949 987
53 t41_6_3, dt41_6_3 2058 1,756,2058 18,42,4949 987
54 t41_6_4, dt41_6_4 2058 1,756,2058 18,42,4949 987
55 t41_6_5, dt41_6_5 2058 1,756,2058 18,42,4949 987
56 t41_6_6, dt41_6_6 2058 1,756,2058 18,42,4949 987
57 t41_6_7, dt41_6_7 2058 1,756,2058 18,42,4949 987
58 t41_7_0, dt41_7_0 2058 1,756,2058 18,42,4949 987
59 t41_7_1, dt41_7_1 2058 1,756,2058 18,42,4949 987
60 t41_7_2, dt41_7_2 2058 1,756,2058 18,42,4949 987
61 t41_7_3, dt41_7_3 2058 1,756,2058 18,42,4949 987
62 t41_7_4, dt41_7_4 2058 1,756,2058 18,42,4949 987
63 t41_7_5, dt41_7_5 2058 1,756,2058 18,42,4949 987
64 t41_7_6, dt41_7_6 2058 1,756,2058 18,42,4949 987
65 t41_7_7, dt41_7_7 2058 1,756,2058 18,42,4949 987
66 t41_8_0, dt41_8_0 2058 1,756,2058 18,42,4949 987
67 t41_8_1, dt41_8_1 2058 1,756,2058 18,42,4949 987
68 t41_8_2, dt41_8_2 2058 1,756,2058 18,42,4949 987
69 t41_8_3, dt41_8_3 2058 1,756,2058 18,42,4949 987
70 t41_8_4, dt41_8_4 2058 1,756,2058 18,42,4949 987
71 t41_8_5, dt41_8_5 2058 1,756,2058 18,42,4949 987
72 t41_8_6, dt41_8_6 2058 1,756,2058 18,42,4949 987
73 t41_8_7, dt41_8_7 2058 1,756,2058 18,42,4949 987
74 t41_9_0, dt41_9_0 2058 1,756,2058 18,42,4949 987
75 t41_9_1, dt41_9_1 2058 1,756,2058 18,42,4949 987
76 t41_9_2, dt41_9_2 2058 1,756,2058 18,42,4949 987
77 t41_9_3, dt41_9_3 2058 1,756,2058 18,42,4949 987
78 t41_9_4, dt41_9_4 2058 1,756,2058 18,42,4949 985
79 t41_9_5, dt41_9_5 2058 1,756,2058 18,42,4949 987
80 t41_9_6, dt41_9_6 2058 1,756,2058 18,42,4949 987
81 t41_9_7, dt41_9_7 2058 1,756,2058 18,42,4949 987
82 t41_10_0, dt41_10_0 2058 1,756,2058 18,42,4949 987
83 t41_10_1, dt41_10_1 2058 1,756,2058 18,42,4949 987
84 t41_10_2, dt41_10_2 2058 1,756,2058 18,42,4949 987
85 t41_10_3, dt41_10_3 2058 1,756,2058 18,42,4949 987
86 t41_10_4, dt41_10_4 2058 1,756,2058 18,42,4949 987
87 t41_10_5, dt41_10_5 2058 1,756,2058 18,42,4949 987
88 t41_10_6, dt41_10_6 2058 1,756,2058 18,42,4949 987
89 t41_10_7, dt41_10_7 2058 1,756,2058 18,42,4949 987
90 t41_11_0, dt41_11_0 2058 1,756,2058 18,42,4949 987
91 t41_11_1, dt41_11_1 2058 1,756,2058 18,42,4949 987
92 t41_11_2, dt41_11_2 2058 1,756,2058 18,42,4949 987
93 t41_11_3, dt41_11_3 2058 1,756,2058 18,42,4949 987
94 t41_11_4, dt41_11_4 2058 1,756,2058 18,42,4949 987
95 t41_11_5, dt41_11_5 2058 1,756,2058 18,42,4949 987
96 t41_11_6, dt41_11_6 2058 1,756,2058 18,42,4949 987
97 t41_11_7, dt41_11_7 2058 1,756,2058 18,42,4949 987
98 t41_12_0, dt41_12_0 2058 1,756,2058 18,42,4949 987
99 t41_12_1, dt41_12_1 2058 1,756,2058 18,42,4949 987
100 t41_12_2, dt41_12_2 2058 1,756,2058 18,42,4949 987
101 t41_12_3, dt41_12_3 2058 1,756,2058 18,42,4949 987
102 t41_12_4, dt41_12_4 2058 1,756,2058 18,42,4949 987
103 t41_12_5, dt41_12_5 2058 1,756,2058 18,42,4949 987
104 t41_12_6, dt41_12_6 2058 1,756,2058 18,42,4949 987
105 t41_12_7, dt41_12_7 2058 1,756,2058 18,42,4949 987
106 t41_13_0, dt41_13_0 2058 1,756,2058 18,42,4949 987
107 t41_13_1, dt41_13_1 2058 1,756,2058 18,42,4949 987
108 t41_13_2, dt41_13_2 2058 1,756,2058 18,42,4949 987
109 t41_13_3, dt41_13_3 2058 1,756,2058 18,42,4949 987
110 t41_13_4, dt41_13_4 2058 1,756,2058 18,42,4949 987
111 t41_13_5, dt41_13_5 2058 1,756,2058 18,42,4949 987
112 t41_13_6, dt41_13_6 2058 1,756,2058 18,42,4949 987
113 t41_13_7, dt41_13_7 2058 1,756,2058 18,42,4949 987
114 t41_14_0, dt41_14_0 2058 1,756,2058 18,42,4949 987
115 t41_14_1, dt41_14_1 2058 1,756,2058 18,42,4949 987
116 t41_14_2, dt41_14_2 2058 1,756,2058 18,42,4949 987
117 t41_14_3, dt41_14_3 2058 1,756,2058 18,42,4949 987
118 t41_14_4, dt41_14_4 2058 1,756,2058 18,42,4949 987
119 t41_14_5, dt41_14_5 2058 1,756,2058 18,42,4949 987
120 t41_14_6, dt41_14_6 2058 1,756,2058 18,42,4949 987
121 t41_14_7, dt41_14_7 2058 1,756,2058 18,42,4949 987
122 t41_15_0, dt41_15_0 2058 1,756,2058 18,42,4949 987
123 t41_15_1, dt41_15_1 2058 1,756,2058 18,42,4949 987
124 t41_15_2, dt41_15_2 2058 1,756,2058 18,42,4949 987
125 t41_15_3, dt41_15_3 2058 1,756,2058 18,42,4949 987
126 t41_15_4, dt41_15_4 2058 1,756,2058 18,42,4949 987
127 t41_15_5, dt41_15_5 2058 1,756,2058 18,42,4949 987
128 t41_15_6, dt41_15_6 2058 1,756,2058 18,42,4949 987
129 t41_15_7, dt41_15_7 2058 1,756,2058 18,42,4949 987
130 t41_16_0, dt41_16_0 2058 1,756,2058 18,42,4949 987
131 t41_16_1, dt41_16_1 2058 1,756,2058 18,42,4949 987
132 t41_16_2, dt41_16_2 2058 1,756,2058 18,42,4949 987
133 t41_16_3, dt41_16_3 2058 1,756,2058 18,42,4949 987
134 t41_16_4, dt41_16_4 2058 1,756,2058 18,42,4949 987
135 t41_16_5, dt41_16_5 2058 1,756,2058 18,42,4949 987
136 t41_16_6, dt41_16_6 2058 1,756,2058 18,42,4949 987
137 t41_16_7, dt41_16_7 2058 1,756,2058 18,42,4949 987
138 t41_17_0, dt41_17_0 2058 1,756,2058 18,42,4949 987
139 t41_17_1, dt41_17_1 2058 1,756,2058 18,42,4949 987
140 t41_17_2, dt41_17_2 2058 1,756,2058 18,42,4949 987
141 t41_17_3, dt41_17_3 2058 1,756,2058 18,42,4949 987
142 t41_17_4, dt41_17_4 2058 1,756,2058 18,42,4949 987
143 t41_17_5, dt41_17_5 2058 1,756,2058 18,42,4949 987
144 t41_17_6, dt41_17_6 2058 1,756,2058 18,42,4949 987
145 t41_17_7, dt41_17_7 2058 1,756,2058 18,42,4949 987
146 t41_18_0, dt41_18_0 2058 1,756,2058 18,42,4949 987
147 t41_18_1, dt41_18_1 2058 1,756,2058 18,42,4949 987
148 t41_18_2, dt41_18_2 2058 1,756,2058 18,42,4949 987
149 t41_18_3, dt41_18_3 2058 1,756,2058 18,42,4949 987
150 t41_18_4, dt41_18_4 2058 1,756,2058 18,42,4949 987
151 t41_18_5, dt41_18_5 2058 1,756,2058 18,42,4949 987
152 t41_18_6, dt41_18_6 2058 1,756,2058 18,42,4949 987
153 t41_18_7, dt41_18_7 2058 1,756,2058 18,42,4949 987
154 t41_19_0, dt41_19_0 2058 1,756,2058 18,42,4949 987
155 t41_19_1, dt41_19_1 2058 1,756,2058 18,42,4949 987
156 t41_19_2, dt41_19_2 2058 1,756,2058 18,42,4949 987
157 t41_19_3, dt41_19_3 2058 1,756,2058 18,42,4949 987
158 t41_19_4, dt41_19_4 2058 1,756,2058 18,42,4949 987
159 t41_19_5, dt41_19_5 2058 1,756,2058 18,42,4949 987
160 t41_19_6, dt41_19_6 2058 1,756,2058 18,42,4949 987
161 t41_19_7, dt41_19_7 2058 1,756,2058 18,42,4949 987
162 t41_20_0, dt41_20_0 2058 1,756,2058 18,42,4949 987
163 t41_20_1, dt41_20_1 2058 1,756,2058 18,42,4949 987
164 t41_20_2, dt41_20_2 2058 1,756,2058 18,42,4949 987
165 t41_20_3, dt41_20_3 2058 1,756,2058 18,42,4949 987
166 t41_20_4, dt41_20_4 2058 1,756,2058 18,42,4949 987
167 t41_20_5, dt41_20_5 2058 1,756,2058 18,42,4949 987
168 t41_20_6, dt41_20_6 2058 1,756,2058 18,42,4949 987
169 t41_20_7, dt41_20_7 2058 1,756,2058 18,42,4949 987
170 t41_21_0, dt41_21_0 2058 1,756,2058 18,42,4949 987
171 t41_21_1, dt41_21_1 2058 1,756,2058 18,42,4949 987
172 t41_21_2, dt41_21_2 2058 1,756,2058 18,42,4949 987
173 t41_21_3, dt41_21_3 2058 1,756,2058 18,42,4949 987
174 t41_21_4, dt41_21_4 2058 1,756,2058 18,42,4949 987
175 t41_21_5, dt41_21_5 2058 1,756,2058 18,42,4949 987
176 t41_21_6, dt41_21_6 2058 1,756,2058 18,42,4949 987
177 t41_21_7, dt41_21_7 2058 1,756,2058 18,42,4949 987
178 t41_22_0, dt41_22_0 2058 1,756,2058 18,42,4949 987
179 t41_22_1, dt41_22_1 2058 1,756,2058 18,42,4949 987
180 t41_22_2, dt41_22_2 2058 1,756,2058 18,42,4949 987
181 t41_22_3, dt41_22_3 2058 1,756,2058 18,42,4949 987
182 t41_22_4, dt41_22_4 2058 1,756,2058 18,42,4949 987
183 t41_22_5, dt41_22_5 2058 1,756,2058 18,42,4949 987
184 t41_22_6, dt41_22_6 2058 1,756,2058 18,42,4949 987
185 t41_22_7, dt41_22_7 2058 1,756,2058 18,42,4949 987
186 t41_23_0, dt41_23_0 2058 1,756,2058 18,42,4949 987
187 t41_23_1, dt41_23_1 2058 1,756,2058 18,42,4949 987
188 t41_23_2, dt41_23_2 2058 1,756,2058 18,42,4949 987
189 t41_23_3, dt41_23_3 2058 1,756,2058 18,42,4949 987
190 t41_23_4, dt41_23_4 2058 1,756,2058 18,42,4949 987
191 t41_23_5, dt41_23_5 2058 1,756,2058 18,42,4949 987
192 t41_23_6, dt41_23_6 2058 1,756,2058 18,42,4949 987
193 t41_23_7, dt41_23_7 2058 1,756,2058 18,42,4949 987
194 t41_24_0, dt41_24_0 2058 1,756,2058 18,42,4949 987
195 t41_24_1, dt41_24_1 2058 1,756,2058 18,42,4949 987
196 t41_24_2, dt41_24_2 2058 1,756,2058 18,42,4949 987
197 t41_24_3, dt41_24_3 2058 1,756,2058 18,42,4949 987
198 t41_25_0, dt41_25_0 2058 1,756,2058 18,42,4949 987
199 t41_25_1, dt41_25_1 2058 1,756,2058 18,42,4949 987
200 t41_25_2, dt41_25_2 2058 1,756,2058 18,42,4949 987
201 t41_25_3, dt41_25_3 2058 1,756,2058 18,42,4949 987

Key to the table

Only one line is displayed for both a plane and its dual, an asterisk (*) in the first column indicating that the plane is self-dual. Each line includes the following information and isomorphism invariants for each plane.


/ revised February, 2011