Projective Planes of Order 49 Related to t39


I am currently compiling a list of known projective planes of order 49. As part of this enumeration, here are listed the plane t39 and all known planes of order 49 obtained from it by dualizing and deriving. Coming soon: also planes related by the method of lifting quotients. This list is currently incomplete; check back later for a complete enumeration.

Following the table is a key to the table.


Known Projective Planes of Order 49 Related to t39

Entry Plane |Autgp| Point Orbits Line Orbits 7-rank
1 Translation Plane t39, dual dt39 230496 23,45,83,2401 1,983,1965,3923 941
2 t39_0_0, dt39_0_0 2058 1,756,2058 18,42,4949 987
3 t39_0_1, dt39_0_1 2058 1,756,2058 18,42,4949 987
4 t39_0_2, dt39_0_2 2058 1,756,2058 18,42,4949 987
5 t39_0_3, dt39_0_3 2058 1,756,2058 18,42,4949 987
6 t39_1_0, dt39_1_0 2058 1,756,2058 18,42,4949 987
7 t39_1_1, dt39_1_1 2058 1,756,2058 18,42,4949 987
8 t39_1_2, dt39_1_2 2058 1,756,2058 18,42,4949 987
9 t39_1_3, dt39_1_3 4116 1,78,1424,2058 12,23,42,497,9821 987
10 t39_1_4, dt39_1_4 4116 1,78,1424,2058 12,23,42,497,9821 987
11 t39_2_0, dt39_2_0 2058 1,756,2058 18,42,4949 987
12 t39_2_1, dt39_2_1 2058 1,756,2058 18,42,4949 987
13 t39_2_2, dt39_2_2 2058 1,756,2058 18,42,4949 987
14 t39_2_3, dt39_2_3 4116 1,78,1424,2058 12,23,42,497,9821 987
15 t39_2_4, dt39_2_4 4116 1,78,1424,2058 12,23,42,497,9821 987
16 t39_3_0, dt39_3_0 2058 1,756,2058 18,42,4949 987
17 t39_3_1, dt39_3_1 2058 1,756,2058 18,42,4949 987
18 t39_4_0, dt39_4_0 2058 1,756,2058 18,42,4949 987
19 t39_4_1, dt39_4_1 2058 1,756,2058 18,42,4949 987
20 t39_5_0, dt39_5_0 2058 1,756,2058 18,42,4949 987
21 t39_5_1, dt39_5_1 2058 1,756,2058 18,42,4949 987
22 t39_6_0, dt39_6_0 2058 1,756,2058 18,42,4949 987
23 t39_6_1, dt39_6_1 4116 1,78,1424,2058 12,23,42,497,9821 987
24 t39_6_2, dt39_6_2 4116 1,78,1424,2058 12,23,42,497,9821 985
25 t39_7_0, dt39_7_0 4116 1,78,1424,2058 12,23,42,497,9821 987
26 t39_7_1, dt39_7_1 2058 1,756,2058 18,42,4949 987
27 t39_7_2, dt39_7_2 4116 1,78,1424,2058 12,23,42,497,9821 985
28 t39_8_0, dt39_8_0 2058 1,756,2058 18,42,4949 987
29 t39_9_0, dt39_9_0 4116 1,78,1424,2058 12,23,42,497,9821 987
30 t39_9_1, dt39_9_1 4116 1,78,1424,2058 12,23,42,497,9821 987
31 t39_10_0, dt39_10_0 2058 1,756,2058 18,42,4949 987

Key to the table

Only one line is displayed for both a plane and its dual, an asterisk (*) in the first column indicating that the plane is self-dual. Each line includes the following information and isomorphism invariants for each plane.


/ revised February, 2011