Projective Planes of Order 49 Related to t36


I am currently compiling a list of known projective planes of order 49. As part of this enumeration, here are listed the plane t36 and all known planes of order 49 obtained from it by dualizing and deriving. Coming soon: also planes related by the method of lifting quotients. This list is currently incomplete; check back later for a complete enumeration.

Following the table is a key to the table.


Known Projective Planes of Order 49 Related to t36

Entry Plane |Autgp| Point Orbits Line Orbits 7-rank
1 Translation Plane t36, dual dt36 115248 23,45,83,2401 1,983,1965,3923 941
2 t36_0_0, dt36_0_0 2058 1,756,2058 18,42,4949 987
3 t36_0_1, dt36_0_1 2058 1,756,2058 18,42,4949 987
4 t36_0_2, dt36_0_2 2058 1,756,2058 18,42,4949 987
5 t36_0_3, dt36_0_3 2058 1,756,2058 18,42,4949 987
6 t36_0_4, dt36_0_4 2058 1,756,2058 18,42,4949 987
7 t36_0_5, dt36_0_5 2058 1,756,2058 18,42,4949 987
8 t36_0_6, dt36_0_6 2058 1,756,2058 18,42,4949 987
9 t36_0_7, dt36_0_7 2058 1,756,2058 18,42,4949 987
10 t36_1_0, dt36_1_0 2058 1,756,2058 18,42,4949 987
11 t36_1_1, dt36_1_1 2058 1,756,2058 18,42,4949 987
12 t36_1_2, dt36_1_2 2058 1,756,2058 18,42,4949 987
13 t36_1_3, dt36_1_3 2058 1,756,2058 18,42,4949 987
14 t36_1_4, dt36_1_4 2058 1,756,2058 18,42,4949 987
15 t36_1_5, dt36_1_5 2058 1,756,2058 18,42,4949 987
16 t36_1_6, dt36_1_6 2058 1,756,2058 18,42,4949 987
17 t36_1_7, dt36_1_7 2058 1,756,2058 18,42,4949 987
18 t36_2_0, dt36_2_0 2058 1,756,2058 18,42,4949 987
19 t36_2_1, dt36_2_1 2058 1,756,2058 18,42,4949 987
20 t36_2_2, dt36_2_2 2058 1,756,2058 18,42,4949 987
21 t36_2_3, dt36_2_3 2058 1,756,2058 18,42,4949 987
22 t36_2_4, dt36_2_4 2058 1,756,2058 18,42,4949 987
23 t36_2_5, dt36_2_5 2058 1,756,2058 18,42,4949 987
24 t36_2_6, dt36_2_6 2058 1,756,2058 18,42,4949 987
25 t36_2_7, dt36_2_7 2058 1,756,2058 18,42,4949 987
26 t36_3_0, dt36_3_0 2058 1,756,2058 18,42,4949 987
27 t36_3_1, dt36_3_1 4116 1,78,1424,2058 12,23,42,497,9821 987
28 t36_3_2, dt36_3_2 2058 1,756,2058 18,42,4949 987
29 t36_3_3, dt36_3_3 2058 1,756,2058 18,42,4949 987
30 t36_3_4, dt36_3_4 4116 1,78,1424,2058 12,23,42,497,9821 987
31 t36_4_0, dt36_4_0 2058 1,756,2058 18,42,4949 987
32 t36_4_1, dt36_4_1 2058 1,756,2058 18,42,4949 987
33 t36_4_2, dt36_4_2 4116 1,78,1424,2058 12,23,42,497,9821 987
34 t36_4_3, dt36_4_3 2058 1,756,2058 18,42,4949 987
35 t36_4_4, dt36_4_4 4116 1,78,1424,2058 12,23,42,497,9821 987
36 t36_5_0, dt36_5_0 4116 1,78,1424,2058 12,23,42,497,9821 987
37 t36_5_1, dt36_5_1 2058 1,756,2058 18,42,4949 987
38 t36_5_2, dt36_5_2 2058 1,756,2058 18,42,4949 987
39 t36_5_3, dt36_5_3 2058 1,756,2058 18,42,4949 987
40 t36_5_4, dt36_5_4 4116 1,78,1424,2058 12,23,42,497,9821 987
41 t36_6_0, dt36_6_0 2058 1,756,2058 18,42,4949 987
42 t36_6_1, dt36_6_1 2058 1,756,2058 18,42,4949 987
43 t36_6_2, dt36_6_2 2058 1,756,2058 18,42,4949 987
44 t36_6_3, dt36_6_3 4116 1,78,1424,2058 12,23,42,497,9821 987
45 t36_6_4, dt36_6_4 4116 1,78,1424,2058 12,23,42,497,9821 985
46 t36_7_0, dt36_7_0 2058 1,756,2058 18,42,4949 987
47 t36_7_1, dt36_7_1 2058 1,756,2058 18,42,4949 987
48 t36_7_2, dt36_7_2 2058 1,756,2058 18,42,4949 987
49 t36_7_3, dt36_7_3 2058 1,756,2058 18,42,4949 987
50 t36_8_0, dt36_8_0 4116 1,78,1424,2058 12,23,42,497,9821 987
51 t36_8_1, dt36_8_1 4116 1,78,1424,2058 12,23,42,497,9821 987
52 t36_8_2, dt36_8_2 2058 1,756,2058 18,42,4949 987
53 t36_9_0, dt36_9_0 4116 1,78,1424,2058 12,23,42,497,9821 987
54 t36_9_1, dt36_9_1 2058 1,756,2058 18,42,4949 987
55 t36_9_2, dt36_9_2 4116 1,78,1424,2058 12,23,42,497,9821 987
56 t36_10_0, dt36_10_0 2058 1,756,2058 18,42,4949 987
57 t36_10_1, dt36_10_1 2058 1,756,2058 18,42,4949 987

Key to the table

Only one line is displayed for both a plane and its dual, an asterisk (*) in the first column indicating that the plane is self-dual. Each line includes the following information and isomorphism invariants for each plane.


/ revised June, 2010