Projective Planes of Order 49 Related to t35


I am currently compiling a list of known projective planes of order 49. As part of this enumeration, here are listed the plane t35 and all known planes of order 49 obtained from it by dualizing and deriving. Coming soon: also planes related by the method of lifting quotients. This list is currently incomplete; check back later for a complete enumeration.

Following the table is a key to the table.


Known Projective Planes of Order 49 Related to t35

Entry Plane |Autgp| Point Orbits Line Orbits 7-rank
1 Translation Plane t35, dual dt35 115248 14,25,43,83,2401 1,494,985,1963,3923 939
2 t35_0_0, dt35_0_0 2058 1,756,2058 18,42,4949 987
3 t35_0_1, dt35_0_1 2058 1,756,2058 18,42,4949 987
4 t35_0_2, dt35_0_2 2058 1,756,2058 18,42,4949 987
5 t35_0_3, dt35_0_3 2058 1,756,2058 18,42,4949 987
6 t35_0_4, dt35_0_4 2058 1,756,2058 18,42,4949 987
7 t35_0_5, dt35_0_5 2058 1,756,2058 18,42,4949 987
8 t35_0_6, dt35_0_6 2058 1,756,2058 18,42,4949 987
9 t35_0_7, dt35_0_7 2058 1,756,2058 18,42,4949 987
10 t35_1_0, dt35_1_0 2058 1,756,2058 18,42,4949 987
11 t35_1_1, dt35_1_1 2058 1,756,2058 18,42,4949 987
12 t35_1_2, dt35_1_2 2058 1,756,2058 18,42,4949 987
13 t35_1_3, dt35_1_3 2058 1,756,2058 18,42,4949 987
14 t35_1_4, dt35_1_4 2058 1,756,2058 18,42,4949 987
15 t35_1_5, dt35_1_5 2058 1,756,2058 18,42,4949 987
16 t35_1_6, dt35_1_6 2058 1,756,2058 18,42,4949 987
17 t35_1_7, dt35_1_7 2058 1,756,2058 18,42,4949 987
18 t35_2_0, dt35_2_0 2058 1,756,2058 18,42,4949 987
19 t35_2_1, dt35_2_1 2058 1,756,2058 18,42,4949 987
20 t35_2_2, dt35_2_2 2058 1,756,2058 18,42,4949 987
21 t35_2_3, dt35_2_3 2058 1,756,2058 18,42,4949 987
22 t35_2_4, dt35_2_4 2058 1,756,2058 18,42,4949 987
23 t35_2_5, dt35_2_5 2058 1,756,2058 18,42,4949 987
24 t35_2_6, dt35_2_6 2058 1,756,2058 18,42,4949 987
25 t35_2_7, dt35_2_7 2058 1,756,2058 18,42,4949 987
26 t35_3_0, dt35_3_0 2058 1,756,2058 18,42,4949 987
27 t35_3_1, dt35_3_1 2058 1,756,2058 18,42,4949 987
28 t35_3_2, dt35_3_2 2058 1,756,2058 18,42,4949 987
29 t35_3_3, dt35_3_3 2058 1,756,2058 18,42,4949 987
30 t35_4_0, dt35_4_0 2058 1,756,2058 18,42,4949 987
31 t35_4_1, dt35_4_1 2058 1,756,2058 18,42,4949 987
32 t35_4_2, dt35_4_2 2058 1,756,2058 18,42,4949 987
33 t35_4_3, dt35_4_3 2058 1,756,2058 18,42,4949 987
34 t35_5_0, dt35_5_0 2058 1,756,2058 18,42,4949 987
35 t35_5_1, dt35_5_1 2058 1,756,2058 18,42,4949 987
36 t35_5_2, dt35_5_2 2058 1,756,2058 18,42,4949 987
37 t35_5_3, dt35_5_3 2058 1,756,2058 18,42,4949 987
38 t35_6_0, dt35_6_0 2058 1,756,2058 18,42,4949 987
39 t35_6_1, dt35_6_1 2058 1,756,2058 18,42,4949 987
40 t35_7_0, dt35_7_0 2058 1,756,2058 18,42,4949 987
41 t35_7_1, dt35_7_1 2058 1,756,2058 18,42,4949 987
42 t35_8_0, dt35_8_0 2058 1,756,2058 18,42,4949 987
43 t35_8_1, dt35_8_1 2058 1,756,2058 18,42,4949 987
44 t35_9_0, dt35_9_0 2058 1,756,2058 18,42,4949 987
45 t35_9_1, dt35_9_1 2058 1,756,2058 18,42,4949 987
46 t35_10_0, dt35_10_0 2058 1,756,2058 18,42,4949 987
47 t35_10_1, dt35_10_1 2058 1,756,2058 18,42,4949 987
48 t35_11_0, dt35_11_0 2058 1,756,2058 18,42,4949 987
49 t35_12_0, dt35_12_0 2058 1,756,2058 18,42,4949 987
50 t35_13_0, dt35_13_0 2058 1,756,2058 18,42,4949 987
51 t35_14_0, dt35_14_0 2058 1,756,2058 18,42,4949 987

Key to the table

Only one line is displayed for both a plane and its dual, an asterisk (*) in the first column indicating that the plane is self-dual. Each line includes the following information and isomorphism invariants for each plane.


/ revised June, 2010