Projective Planes of Order 49 Related to t34


I am currently compiling a list of known projective planes of order 49. As part of this enumeration, here are listed the plane t34 and all known planes of order 49 obtained from it by dualizing and deriving. Coming soon: also planes related by the method of lifting quotients. This list is currently incomplete; check back later for a complete enumeration.

Following the table is a key to the table.


Known Projective Planes of Order 49 Related to t34

Entry Plane |Autgp| Point Orbits Line Orbits 7-rank
1 Translation Plane t34, dual dt34 86436 12,312,62,2401 1,492,14712,2942 941
2 t34_0_0, dt34_0_0 2058 1,756,2058 18,42,4949 987
3 t34_0_1, dt34_0_1 2058 1,756,2058 18,42,4949 987
4 t34_0_2, dt34_0_2 2058 1,756,2058 18,42,4949 987
5 t34_0_3, dt34_0_3 2058 1,756,2058 18,42,4949 987
6 t34_0_4, dt34_0_4 2058 1,756,2058 18,42,4949 987
7 t34_0_5, dt34_0_5 2058 1,756,2058 18,42,4949 987
8 t34_0_6, dt34_0_6 2058 1,756,2058 18,42,4949 987
9 t34_0_7, dt34_0_7 2058 1,756,2058 18,42,4949 987
10 t34_1_0, dt34_1_0 2058 1,756,2058 18,42,4949 987
11 t34_1_1, dt34_1_1 2058 1,756,2058 18,42,4949 987
12 t34_1_2, dt34_1_2 2058 1,756,2058 18,42,4949 987
13 t34_1_3, dt34_1_3 2058 1,756,2058 18,42,4949 987
14 t34_1_4, dt34_1_4 2058 1,756,2058 18,42,4949 987
15 t34_1_5, dt34_1_5 2058 1,756,2058 18,42,4949 987
16 t34_1_6, dt34_1_6 2058 1,756,2058 18,42,4949 987
17 t34_1_7, dt34_1_7 2058 1,756,2058 18,42,4949 987
18 t34_2_0, dt34_2_0 2058 1,756,2058 18,42,4949 987
19 t34_2_1, dt34_2_1 2058 1,756,2058 18,42,4949 987
20 t34_2_2, dt34_2_2 2058 1,756,2058 18,42,4949 987
21 t34_2_3, dt34_2_3 2058 1,756,2058 18,42,4949 987
22 t34_3_0, dt34_3_0 2058 1,756,2058 18,42,4949 987
23 t34_3_1, dt34_3_1 2058 1,756,2058 18,42,4949 987
24 t34_3_2, dt34_3_2 2058 1,756,2058 18,42,4949 987
25 t34_3_3, dt34_3_3 2058 1,756,2058 18,42,4949 987
26 t34_4_0, dt34_4_0 2058 1,756,2058 18,42,4949 987
27 t34_4_1, dt34_4_1 2058 1,756,2058 18,42,4949 987
28 t34_4_2, dt34_4_2 2058 1,756,2058 18,42,4949 987
29 t34_4_3, dt34_4_3 2058 1,756,2058 18,42,4949 987
30 t34_5_0, dt34_5_0 2058 1,756,2058 18,42,4949 987
31 t34_5_1, dt34_5_1 2058 1,756,2058 18,42,4949 987
32 t34_5_2, dt34_5_2 2058 1,756,2058 18,42,4949 987
33 t34_5_3, dt34_5_3 2058 1,756,2058 18,42,4949 987
34 t34_6_0, dt34_6_0 2058 1,756,2058 18,42,4949 987
35 t34_6_1, dt34_6_1 2058 1,756,2058 18,42,4949 987
36 t34_6_2, dt34_6_2 2058 1,756,2058 18,42,4949 987
37 t34_6_3, dt34_6_3 2058 1,756,2058 18,42,4949 987
38 t34_7_0, dt34_7_0 2058 1,756,2058 18,42,4949 987
39 t34_7_1, dt34_7_1 2058 1,756,2058 18,42,4949 987
40 t34_7_2, dt34_7_2 2058 1,756,2058 18,42,4949 987
41 t34_7_3, dt34_7_3 2058 1,756,2058 18,42,4949 987
42 t34_8_0, dt34_8_0 2058 1,756,2058 18,42,4949 987
43 t34_8_1, dt34_8_1 2058 1,756,2058 18,42,4949 987
44 t34_8_2, dt34_8_2 2058 1,756,2058 18,42,4949 987
45 t34_8_3, dt34_8_3 2058 1,756,2058 18,42,4949 987
46 t34_9_0, dt34_9_0 2058 1,756,2058 18,42,4949 987
47 t34_9_1, dt34_9_1 2058 1,756,2058 18,42,4949 987
48 t34_9_2, dt34_9_2 2058 1,756,2058 18,42,4949 987
49 t34_9_3, dt34_9_3 2058 1,756,2058 18,42,4949 987
50 t34_10_0, dt34_10_0 2058 1,756,2058 18,42,4949 987
51 t34_10_1, dt34_10_1 2058 1,756,2058 18,42,4949 987
52 t34_10_2, dt34_10_2 2058 1,756,2058 18,42,4949 987
53 t34_10_3, dt34_10_3 2058 1,756,2058 18,42,4949 987
54 t34_11_0, dt34_11_0 2058 1,756,2058 18,42,4949 987
55 t34_11_1, dt34_11_1 2058 1,756,2058 18,42,4949 987
56 t34_11_2, dt34_11_2 2058 1,756,2058 18,42,4949 987
57 t34_11_3, dt34_11_3 2058 1,756,2058 18,42,4949 987
58 t34_12_0, dt34_12_0 2058 1,756,2058 18,42,4949 987
59 t34_12_1, dt34_12_1 2058 1,756,2058 18,42,4949 987
60 t34_12_2, dt34_12_2 2058 1,756,2058 18,42,4949 987
61 t34_12_3, dt34_12_3 2058 1,756,2058 18,42,4949 987
62 t34_13_0, dt34_13_0 2058 1,756,2058 18,42,4949 987
63 t34_13_1, dt34_13_1 2058 1,756,2058 18,42,4949 987
64 t34_13_2, dt34_13_2 2058 1,756,2058 18,42,4949 987
65 t34_13_3, dt34_13_3 2058 1,756,2058 18,42,4949 987
66 t34_14_0, dt34_14_0 6174 1,72,2118,2058 12,32,42,49,14716 987
67 t34_14_1, dt34_14_1 6174 1,72,2118,2058 12,32,42,49,14716 987
68 t34_14_2, dt34_14_2 6174 1,72,2118,2058 12,32,42,49,14716 987
69 t34_14_3, dt34_14_3 6174 1,72,2118,2058 12,32,42,49,14716 987
70 t34_15_0, dt34_15_0 6174 1,78,2116,2058 18,42,49,14716 987
71 t34_15_1, dt34_15_1 2058 1,756,2058 18,42,4949 987

Key to the table

Only one line is displayed for both a plane and its dual, an asterisk (*) in the first column indicating that the plane is self-dual. Each line includes the following information and isomorphism invariants for each plane.


/ revised June, 2010