Projective Planes of Order 49 Related to t30


I am currently compiling a list of known projective planes of order 49. As part of this enumeration, here are listed the plane t30 and all known planes of order 49 obtained from it by dualizing and deriving. Coming soon: also planes related by the method of lifting quotients. This list is currently incomplete; check back later for a complete enumeration.

Following the table is a key to the table.


Known Projective Planes of Order 49 Related to t30

Entry Plane |Autgp| Point Orbits Line Orbits 7-rank
1 Translation Plane t30, dual dt30 172872 24,34,63,12,2401 1,984,1474,2943,588 941
2 t30_0_0, dt30_0_0 2058 1,756,2058 18,42,4949 987
3 t30_0_1, dt30_0_1 2058 1,756,2058 18,42,4949 987
4 t30_0_2, dt30_0_2 2058 1,756,2058 18,42,4949 987
5 t30_0_3, dt30_0_3 2058 1,756,2058 18,42,4949 987
6 t30_0_4, dt30_0_4 2058 1,756,2058 18,42,4949 987
7 t30_0_5, dt30_0_5 2058 1,756,2058 18,42,4949 987
8 t30_0_6, dt30_0_6 2058 1,756,2058 18,42,4949 987
9 t30_0_7, dt30_0_7 2058 1,756,2058 18,42,4949 987
10 t30_1_0, dt30_1_0 2058 1,756,2058 18,42,4949 987
11 t30_1_1, dt30_1_1 2058 1,756,2058 18,42,4949 987
12 t30_1_2, dt30_1_2 2058 1,756,2058 18,42,4949 987
13 t30_1_3, dt30_1_3 2058 1,756,2058 18,42,4949 987
14 t30_2_0, dt30_2_0 2058 1,756,2058 18,42,4949 987
15 t30_2_1, dt30_2_1 2058 1,756,2058 18,42,4949 987
16 t30_2_2, dt30_2_2 2058 1,756,2058 18,42,4949 987
17 t30_2_3, dt30_2_3 2058 1,756,2058 18,42,4949 987
18 t30_3_0, dt30_3_0 2058 1,756,2058 18,42,4949 987
19 t30_3_1, dt30_3_1 2058 1,756,2058 18,42,4949 987
20 t30_3_2, dt30_3_2 2058 1,756,2058 18,42,4949 987
21 t30_3_3, dt30_3_3 2058 1,756,2058 18,42,4949 987
22 t30_4_0, dt30_4_0 2058 1,756,2058 18,42,4949 987
23 t30_4_1, dt30_4_1 2058 1,756,2058 18,42,4949 987
24 t30_5_0, dt30_5_0 2058 1,756,2058 18,42,4949 987
25 t30_5_1, dt30_5_1 2058 1,756,2058 18,42,4949 987
26 t30_6_0, dt30_6_0 2058 1,756,2058 18,42,4949 987
27 t30_6_1, dt30_6_1 2058 1,756,2058 18,42,4949 987
28 t30_7_0, dt30_7_0 2058 1,756,2058 18,42,4949 987
29 t30_7_1, dt30_7_1 2058 1,756,2058 18,42,4949 987
30 t30_8_0, dt30_8_0 2058 1,756,2058 18,42,4949 987
31 t30_8_1, dt30_8_1 6174 1,78,2116,2058 12,32,42,497,14714 987
32 t30_9_0, dt30_9_0 6174 1,78,2116,2058 12,32,42,497,14714 987
33 t30_9_1, dt30_9_1 2058 1,756,2058 18,42,4949 987
34 t30_10_0, dt30_10_0 6174 1,78,2116,2058 12,32,42,497,14714 985
35 t30_10_1, dt30_10_1 2058 1,756,2058 18,42,4949 987
36 t30_11_0, dt30_11_0 6174 1,78,2116,2058 12,32,42,497,14714 987
37 t30_11_1, dt30_11_1 2058 1,756,2058 18,42,4949 987

Key to the table

Only one line is displayed for both a plane and its dual, an asterisk (*) in the first column indicating that the plane is self-dual. Each line includes the following information and isomorphism invariants for each plane.


/ revised June, 2010