Projective Planes of Order 49 Related to t19


I am currently compiling a list of known projective planes of order 49. As part of this enumeration, here are listed the plane t19 and all known planes of order 49 obtained from it by dualizing and deriving. Coming soon: also planes related by the method of lifting quotients. This list is currently incomplete; check back later for a complete enumeration.

Following the table is a key to the table.


Known Projective Planes of Order 49 Related to t19

Entry Plane |Autgp| Point Orbits Line Orbits 7-rank
1 Translation Plane t19, dual dt19 57624 12,24,410,2401 1,492,984,19610 941
2 t19_0_0, dt19_0_0 2058 1,756,2058 18,42,4949 987
3 t19_0_1, dt19_0_1 2058 1,756,2058 18,42,4949 987
4 t19_0_2, dt19_0_2 2058 1,756,2058 18,42,4949 987
5 t19_0_3, dt19_0_3 2058 1,756,2058 18,42,4949 987
6 t19_0_4, dt19_0_4 2058 1,756,2058 18,42,4949 987
7 t19_0_5, dt19_0_5 2058 1,756,2058 18,42,4949 987
8 t19_0_6, dt19_0_6 2058 1,756,2058 18,42,4949 987
9 t19_0_7, dt19_0_7 2058 1,756,2058 18,42,4949 987
10 t19_1_0, dt19_1_0 2058 1,756,2058 18,42,4949 987
11 t19_1_1, dt19_1_1 2058 1,756,2058 18,42,4949 987
12 t19_1_2, dt19_1_2 2058 1,756,2058 18,42,4949 987
13 t19_1_3, dt19_1_3 2058 1,756,2058 18,42,4949 987
14 t19_1_4, dt19_1_4 2058 1,756,2058 18,42,4949 987
15 t19_1_5, dt19_1_5 2058 1,756,2058 18,42,4949 987
16 t19_1_6, dt19_1_6 2058 1,756,2058 18,42,4949 987
17 t19_1_7, dt19_1_7 2058 1,756,2058 18,42,4949 987
18 t19_2_0, dt19_2_0 2058 1,756,2058 18,42,4949 987
19 t19_2_1, dt19_2_1 2058 1,756,2058 18,42,4949 987
20 t19_2_2, dt19_2_2 2058 1,756,2058 18,42,4949 987
21 t19_2_3, dt19_2_3 2058 1,756,2058 18,42,4949 987
22 t19_2_4, dt19_2_4 2058 1,756,2058 18,42,4949 987
23 t19_2_5, dt19_2_5 2058 1,756,2058 18,42,4949 987
24 t19_2_6, dt19_2_6 2058 1,756,2058 18,42,4949 987
25 t19_2_7, dt19_2_7 2058 1,756,2058 18,42,4949 987
26 t19_3_0, dt19_3_0 2058 1,756,2058 18,42,4949 987
27 t19_3_1, dt19_3_1 2058 1,756,2058 18,42,4949 987
28 t19_3_2, dt19_3_2 2058 1,756,2058 18,42,4949 987
29 t19_3_3, dt19_3_3 2058 1,756,2058 18,42,4949 987
30 t19_3_4, dt19_3_4 2058 1,756,2058 18,42,4949 987
31 t19_3_5, dt19_3_5 2058 1,756,2058 18,42,4949 987
32 t19_3_6, dt19_3_6 2058 1,756,2058 18,42,4949 987
33 t19_3_7, dt19_3_7 2058 1,756,2058 18,42,4949 987
34 t19_4_0, dt19_4_0 2058 1,756,2058 18,42,4949 987
35 t19_4_1, dt19_4_1 2058 1,756,2058 18,42,4949 987
36 t19_4_2, dt19_4_2 2058 1,756,2058 18,42,4949 987
37 t19_4_3, dt19_4_3 2058 1,756,2058 18,42,4949 987
38 t19_4_4, dt19_4_4 2058 1,756,2058 18,42,4949 985
39 t19_4_5, dt19_4_5 2058 1,756,2058 18,42,4949 987
40 t19_4_6, dt19_4_6 2058 1,756,2058 18,42,4949 987
41 t19_4_7, dt19_4_7 2058 1,756,2058 18,42,4949 987
42 t19_5_0, dt19_5_0 2058 1,756,2058 18,42,4949 987
43 t19_5_1, dt19_5_1 2058 1,756,2058 18,42,4949 987
44 t19_5_2, dt19_5_2 2058 1,756,2058 18,42,4949 987
45 t19_5_3, dt19_5_3 2058 1,756,2058 18,42,4949 987
46 t19_5_4, dt19_5_4 2058 1,756,2058 18,42,4949 987
47 t19_5_5, dt19_5_5 2058 1,756,2058 18,42,4949 987
48 t19_5_6, dt19_5_6 2058 1,756,2058 18,42,4949 987
49 t19_5_7, dt19_5_7 2058 1,756,2058 18,42,4949 987
50 t19_6_0, dt19_6_0 2058 1,756,2058 18,42,4949 987
51 t19_6_1, dt19_6_1 2058 1,756,2058 18,42,4949 987
52 t19_6_2, dt19_6_2 2058 1,756,2058 18,42,4949 987
53 t19_6_3, dt19_6_3 2058 1,756,2058 18,42,4949 987
54 t19_6_4, dt19_6_4 2058 1,756,2058 18,42,4949 987
55 t19_6_5, dt19_6_5 2058 1,756,2058 18,42,4949 987
56 t19_6_6, dt19_6_6 2058 1,756,2058 18,42,4949 987
57 t19_6_7, dt19_6_7 2058 1,756,2058 18,42,4949 987
58 t19_7_0, dt19_7_0 2058 1,756,2058 18,42,4949 987
59 t19_7_1, dt19_7_1 2058 1,756,2058 18,42,4949 987
60 t19_7_2, dt19_7_2 2058 1,756,2058 18,42,4949 987
61 t19_7_3, dt19_7_3 2058 1,756,2058 18,42,4949 987
62 t19_7_4, dt19_7_4 2058 1,756,2058 18,42,4949 987
63 t19_7_5, dt19_7_5 2058 1,756,2058 18,42,4949 987
64 t19_7_6, dt19_7_6 2058 1,756,2058 18,42,4949 987
65 t19_7_7, dt19_7_7 2058 1,756,2058 18,42,4949 987
66 t19_8_0, dt19_8_0 2058 1,756,2058 18,42,4949 987
67 t19_8_1, dt19_8_1 2058 1,756,2058 18,42,4949 987
68 t19_8_2, dt19_8_2 2058 1,756,2058 18,42,4949 987
69 t19_8_3, dt19_8_3 2058 1,756,2058 18,42,4949 987
70 t19_8_4, dt19_8_4 2058 1,756,2058 18,42,4949 987
71 t19_8_5, dt19_8_5 2058 1,756,2058 18,42,4949 987
72 t19_8_6, dt19_8_6 2058 1,756,2058 18,42,4949 987
73 t19_8_7, dt19_8_7 2058 1,756,2058 18,42,4949 987
74 t19_9_0, dt19_9_0 2058 1,756,2058 18,42,4949 987
75 t19_9_1, dt19_9_1 2058 1,756,2058 18,42,4949 987
76 t19_9_2, dt19_9_2 2058 1,756,2058 18,42,4949 987
77 t19_9_3, dt19_9_3 2058 1,756,2058 18,42,4949 987
78 t19_9_4, dt19_9_4 2058 1,756,2058 18,42,4949 987
79 t19_9_5, dt19_9_5 2058 1,756,2058 18,42,4949 987
80 t19_9_6, dt19_9_6 2058 1,756,2058 18,42,4949 987
81 t19_9_7, dt19_9_7 2058 1,756,2058 18,42,4949 987
82 t19_10_0, dt19_10_0 2058 1,756,2058 18,42,4949 987
83 t19_10_1, dt19_10_1 2058 1,756,2058 18,42,4949 987
84 t19_10_2, dt19_10_2 2058 1,756,2058 18,42,4949 987
85 t19_10_3, dt19_10_3 2058 1,756,2058 18,42,4949 987
86 t19_11_0, dt19_11_0 2058 1,756,2058 18,42,4949 987
87 t19_11_1, dt19_11_1 2058 1,756,2058 18,42,4949 987
88 t19_11_2, dt19_11_2 2058 1,756,2058 18,42,4949 987
89 t19_11_3, dt19_11_3 2058 1,756,2058 18,42,4949 987
90 t19_12_0, dt19_12_0 2058 1,756,2058 18,42,4949 987
91 t19_12_1, dt19_12_1 2058 1,756,2058 18,42,4949 987
92 t19_12_2, dt19_12_2 2058 1,756,2058 18,42,4949 987
93 t19_12_3, dt19_12_3 2058 1,756,2058 18,42,4949 987
94 t19_13_0, dt19_13_0 2058 1,756,2058 18,42,4949 987
95 t19_13_1, dt19_13_1 2058 1,756,2058 18,42,4949 987
96 t19_13_2, dt19_13_2 2058 1,756,2058 18,42,4949 987
97 t19_13_3, dt19_13_3 2058 1,756,2058 18,42,4949 987
98 t19_14_0, dt19_14_0 4116 1,78,1424,2058 18,42,49,9824 987
99 t19_14_1, dt19_14_1 4116 1,78,1424,2058 18,42,49,9824 987
100 t19_14_2, dt19_14_2 4116 1,78,1424,2058 18,42,49,9824 987
101 t19_14_3, dt19_14_3 4116 1,78,1424,2058 18,42,49,9824 987
102 t19_15_0, dt19_15_0 4116 1,78,1424,2058 18,42,49,9824 987
103 t19_15_1, dt19_15_1 4116 1,78,1424,2058 18,42,49,9824 987
104 t19_15_2, dt19_15_2 4116 1,78,1424,2058 18,42,49,9824 987
105 t19_15_3, dt19_15_3 4116 1,78,1424,2058 18,42,49,9824 987

Key to the table

Only one line is displayed for both a plane and its dual, an asterisk (*) in the first column indicating that the plane is self-dual. Each line includes the following information and isomorphism invariants for each plane.


/ revised June, 2010