Projective Planes of Order 49 Related to t18


I am currently compiling a list of known projective planes of order 49. As part of this enumeration, here are listed the plane t18 and all known planes of order 49 obtained from it by dualizing and deriving. Coming soon: also planes related by the method of lifting quotients. This list is currently incomplete; check back later for a complete enumeration.

Following the table is a key to the table.


Known Projective Planes of Order 49 Related to t18

Entry Plane |Autgp| Point Orbits Line Orbits 7-rank
1 Translation Plane t18, dual dt18 115248 12,22,45,83,2401 1,492,982,1965,3923 939
2 t18_0_0, dt18_0_0 2058 1,756,2058 18,42,4949 987
3 t18_0_1, dt18_0_1 2058 1,756,2058 18,42,4949 987
4 t18_0_2, dt18_0_2 2058 1,756,2058 18,42,4949 987
5 t18_0_3, dt18_0_3 2058 1,756,2058 18,42,4949 987
6 t18_0_4, dt18_0_4 2058 1,756,2058 18,42,4949 987
7 t18_0_5, dt18_0_5 2058 1,756,2058 18,42,4949 987
8 t18_0_6, dt18_0_6 2058 1,756,2058 18,42,4949 987
9 t18_0_7, dt18_0_7 2058 1,756,2058 18,42,4949 987
10 t18_1_0, dt18_1_0 2058 1,756,2058 18,42,4949 987
11 t18_1_1, dt18_1_1 2058 1,756,2058 18,42,4949 987
12 t18_1_2, dt18_1_2 2058 1,756,2058 18,42,4949 987
13 t18_1_3, dt18_1_3 2058 1,756,2058 18,42,4949 987
14 t18_1_4, dt18_1_4 2058 1,756,2058 18,42,4949 987
15 t18_1_5, dt18_1_5 2058 1,756,2058 18,42,4949 987
16 t18_1_6, dt18_1_6 2058 1,756,2058 18,42,4949 987
17 t18_1_7, dt18_1_7 2058 1,756,2058 18,42,4949 987
18 t18_2_0, dt18_2_0 2058 1,756,2058 18,42,4949 987
19 t18_2_1, dt18_2_1 2058 1,756,2058 18,42,4949 987
20 t18_2_2, dt18_2_2 2058 1,756,2058 18,42,4949 987
21 t18_2_3, dt18_2_3 2058 1,756,2058 18,42,4949 987
22 t18_2_4, dt18_2_4 2058 1,756,2058 18,42,4949 987
23 t18_2_5, dt18_2_5 2058 1,756,2058 18,42,4949 987
24 t18_2_6, dt18_2_6 2058 1,756,2058 18,42,4949 987
25 t18_2_7, dt18_2_7 2058 1,756,2058 18,42,4949 987
26 t18_3_0, dt18_3_0 2058 1,756,2058 18,42,4949 987
27 t18_3_1, dt18_3_1 2058 1,756,2058 18,42,4949 987
28 t18_3_2, dt18_3_2 2058 1,756,2058 18,42,4949 987
29 t18_3_3, dt18_3_3 2058 1,756,2058 18,42,4949 987
30 t18_4_0, dt18_4_0 2058 1,756,2058 18,42,4949 987
31 t18_4_1, dt18_4_1 2058 1,756,2058 18,42,4949 987
32 t18_4_2, dt18_4_2 2058 1,756,2058 18,42,4949 987
33 t18_4_3, dt18_4_3 2058 1,756,2058 18,42,4949 987
34 t18_5_0, dt18_5_0 2058 1,756,2058 18,42,4949 987
35 t18_5_1, dt18_5_1 2058 1,756,2058 18,42,4949 987
36 t18_5_2, dt18_5_2 2058 1,756,2058 18,42,4949 987
37 t18_5_3, dt18_5_3 2058 1,756,2058 18,42,4949 987
38 t18_6_0, dt18_6_0 2058 1,756,2058 18,42,4949 987
39 t18_6_1, dt18_6_1 2058 1,756,2058 18,42,4949 987
40 t18_6_2, dt18_6_2 2058 1,756,2058 18,42,4949 987
41 t18_6_3, dt18_6_3 2058 1,756,2058 18,42,4949 987
42 t18_7_0, dt18_7_0 2058 1,756,2058 18,42,4949 987
43 t18_7_1, dt18_7_1 2058 1,756,2058 18,42,4949 987
44 t18_7_2, dt18_7_2 2058 1,756,2058 18,42,4949 987
45 t18_7_3, dt18_7_3 2058 1,756,2058 18,42,4949 987
46 t18_8_0, dt18_8_0 2058 1,756,2058 18,42,4949 987
47 t18_8_1, dt18_8_1 2058 1,756,2058 18,42,4949 987
48 t18_9_0, dt18_9_0 2058 1,756,2058 18,42,4949 987
49 t18_9_1, dt18_9_1 2058 1,756,2058 18,42,4949 987
50 t18_10_0, dt18_10_0 2058 1,756,2058 18,42,4949 987
51 t18_11_0, dt18_11_0 2058 1,756,2058 18,42,4949 987

Key to the table

Only one line is displayed for both a plane and its dual, an asterisk (*) in the first column indicating that the plane is self-dual. Each line includes the following information and isomorphism invariants for each plane.


/ revised June, 2010