Projective Planes of Order 49 Related to t115


I am currently compiling a list of known projective planes of order 49. As part of this enumeration, here are listed the plane t115 and all known planes of order 49 obtained from it by dualizing and deriving. Coming soon: also planes related by the method of lifting quotients. This list is currently incomplete; check back later for a complete enumeration.

Following the table is a key to the table.


Known Projective Planes of Order 49 Related to t115

Entry Plane |Autgp| Point Orbits Line Orbits 7-rank
1 Translation Plane t115, dual dt115 28812 16,222,2401 1,496,9822 941
2 t115_0_0, dt115_0_0 2058 1,756,2058 18,42,4949 987
3 t115_0_1, dt115_0_1 2058 1,756,2058 18,42,4949 987
4 t115_0_2, dt115_0_2 2058 1,756,2058 18,42,4949 987
5 t115_0_3, dt115_0_3 2058 1,756,2058 18,42,4949 987
6 t115_0_4, dt115_0_4 2058 1,756,2058 18,42,4949 987
7 t115_0_5, dt115_0_5 2058 1,756,2058 18,42,4949 987
8 t115_0_6, dt115_0_6 2058 1,756,2058 18,42,4949 987
9 t115_0_7, dt115_0_7 2058 1,756,2058 18,42,4949 987
10 t115_1_0, dt115_1_0 2058 1,756,2058 18,42,4949 987
11 t115_1_1, dt115_1_1 2058 1,756,2058 18,42,4949 987
12 t115_1_2, dt115_1_2 2058 1,756,2058 18,42,4949 987
13 t115_1_3, dt115_1_3 2058 1,756,2058 18,42,4949 987
14 t115_1_4, dt115_1_4 2058 1,756,2058 18,42,4949 987
15 t115_1_5, dt115_1_5 2058 1,756,2058 18,42,4949 987
16 t115_1_6, dt115_1_6 2058 1,756,2058 18,42,4949 987
17 t115_1_7, dt115_1_7 2058 1,756,2058 18,42,4949 987
18 t115_2_0, dt115_2_0 2058 1,756,2058 18,42,4949 987
19 t115_2_1, dt115_2_1 2058 1,756,2058 18,42,4949 987
20 t115_2_2, dt115_2_2 2058 1,756,2058 18,42,4949 987
21 t115_2_3, dt115_2_3 2058 1,756,2058 18,42,4949 987
22 t115_2_4, dt115_2_4 2058 1,756,2058 18,42,4949 987
23 t115_2_5, dt115_2_5 2058 1,756,2058 18,42,4949 987
24 t115_2_6, dt115_2_6 2058 1,756,2058 18,42,4949 987
25 t115_2_7, dt115_2_7 2058 1,756,2058 18,42,4949 987
26 t115_3_0, dt115_3_0 2058 1,756,2058 18,42,4949 987
27 t115_3_1, dt115_3_1 2058 1,756,2058 18,42,4949 987
28 t115_3_2, dt115_3_2 2058 1,756,2058 18,42,4949 987
29 t115_3_3, dt115_3_3 2058 1,756,2058 18,42,4949 987
30 t115_3_4, dt115_3_4 2058 1,756,2058 18,42,4949 987
31 t115_3_5, dt115_3_5 2058 1,756,2058 18,42,4949 987
32 t115_3_6, dt115_3_6 2058 1,756,2058 18,42,4949 987
33 t115_3_7, dt115_3_7 2058 1,756,2058 18,42,4949 987
34 t115_4_0, dt115_4_0 2058 1,756,2058 18,42,4949 987
35 t115_4_1, dt115_4_1 2058 1,756,2058 18,42,4949 987
36 t115_4_2, dt115_4_2 2058 1,756,2058 18,42,4949 987
37 t115_4_3, dt115_4_3 2058 1,756,2058 18,42,4949 987
38 t115_4_4, dt115_4_4 2058 1,756,2058 18,42,4949 987
39 t115_4_5, dt115_4_5 2058 1,756,2058 18,42,4949 987
40 t115_4_6, dt115_4_6 2058 1,756,2058 18,42,4949 987
41 t115_4_7, dt115_4_7 2058 1,756,2058 18,42,4949 987
42 t115_5_0, dt115_5_0 2058 1,756,2058 18,42,4949 987
43 t115_5_1, dt115_5_1 2058 1,756,2058 18,42,4949 987
44 t115_5_2, dt115_5_2 2058 1,756,2058 18,42,4949 987
45 t115_5_3, dt115_5_3 2058 1,756,2058 18,42,4949 987
46 t115_5_4, dt115_5_4 2058 1,756,2058 18,42,4949 987
47 t115_5_5, dt115_5_5 2058 1,756,2058 18,42,4949 987
48 t115_5_6, dt115_5_6 2058 1,756,2058 18,42,4949 987
49 t115_5_7, dt115_5_7 2058 1,756,2058 18,42,4949 987
50 t115_6_0, dt115_6_0 2058 1,756,2058 18,42,4949 987
51 t115_6_1, dt115_6_1 2058 1,756,2058 18,42,4949 987
52 t115_6_2, dt115_6_2 2058 1,756,2058 18,42,4949 987
53 t115_6_3, dt115_6_3 2058 1,756,2058 18,42,4949 987
54 t115_6_4, dt115_6_4 2058 1,756,2058 18,42,4949 987
55 t115_6_5, dt115_6_5 2058 1,756,2058 18,42,4949 987
56 t115_6_6, dt115_6_6 2058 1,756,2058 18,42,4949 987
57 t115_6_7, dt115_6_7 2058 1,756,2058 18,42,4949 987
58 t115_7_0, dt115_7_0 2058 1,756,2058 18,42,4949 987
59 t115_7_1, dt115_7_1 2058 1,756,2058 18,42,4949 987
60 t115_7_2, dt115_7_2 2058 1,756,2058 18,42,4949 987
61 t115_7_3, dt115_7_3 2058 1,756,2058 18,42,4949 987
62 t115_7_4, dt115_7_4 2058 1,756,2058 18,42,4949 987
63 t115_7_5, dt115_7_5 2058 1,756,2058 18,42,4949 987
64 t115_7_6, dt115_7_6 2058 1,756,2058 18,42,4949 987
65 t115_7_7, dt115_7_7 2058 1,756,2058 18,42,4949 987
66 t115_8_0, dt115_8_0 2058 1,756,2058 18,42,4949 987
67 t115_8_1, dt115_8_1 2058 1,756,2058 18,42,4949 987
68 t115_8_2, dt115_8_2 2058 1,756,2058 18,42,4949 987
69 t115_8_3, dt115_8_3 2058 1,756,2058 18,42,4949 987
70 t115_8_4, dt115_8_4 2058 1,756,2058 18,42,4949 987
71 t115_8_5, dt115_8_5 2058 1,756,2058 18,42,4949 987
72 t115_8_6, dt115_8_6 2058 1,756,2058 18,42,4949 987
73 t115_8_7, dt115_8_7 2058 1,756,2058 18,42,4949 987
74 t115_9_0, dt115_9_0 2058 1,756,2058 18,42,4949 987
75 t115_9_1, dt115_9_1 2058 1,756,2058 18,42,4949 987
76 t115_9_2, dt115_9_2 2058 1,756,2058 18,42,4949 987
77 t115_9_3, dt115_9_3 2058 1,756,2058 18,42,4949 987
78 t115_9_4, dt115_9_4 2058 1,756,2058 18,42,4949 987
79 t115_9_5, dt115_9_5 2058 1,756,2058 18,42,4949 987
80 t115_9_6, dt115_9_6 2058 1,756,2058 18,42,4949 987
81 t115_9_7, dt115_9_7 2058 1,756,2058 18,42,4949 987
82 t115_10_0, dt115_10_0 2058 1,756,2058 18,42,4949 987
83 t115_10_1, dt115_10_1 2058 1,756,2058 18,42,4949 985
84 t115_10_2, dt115_10_2 2058 1,756,2058 18,42,4949 987
85 t115_10_3, dt115_10_3 2058 1,756,2058 18,42,4949 987
86 t115_10_4, dt115_10_4 2058 1,756,2058 18,42,4949 987
87 t115_10_5, dt115_10_5 2058 1,756,2058 18,42,4949 987
88 t115_10_6, dt115_10_6 2058 1,756,2058 18,42,4949 987
89 t115_10_7, dt115_10_7 2058 1,756,2058 18,42,4949 987
90 t115_11_0, dt115_11_0 2058 1,756,2058 18,42,4949 987
91 t115_11_1, dt115_11_1 2058 1,756,2058 18,42,4949 987
92 t115_11_2, dt115_11_2 2058 1,756,2058 18,42,4949 987
93 t115_11_3, dt115_11_3 2058 1,756,2058 18,42,4949 987
94 t115_11_4, dt115_11_4 2058 1,756,2058 18,42,4949 987
95 t115_11_5, dt115_11_5 2058 1,756,2058 18,42,4949 987
96 t115_11_6, dt115_11_6 2058 1,756,2058 18,42,4949 987
97 t115_11_7, dt115_11_7 2058 1,756,2058 18,42,4949 987
98 t115_12_0, dt115_12_0 2058 1,756,2058 18,42,4949 987
99 t115_12_1, dt115_12_1 2058 1,756,2058 18,42,4949 987
100 t115_12_2, dt115_12_2 2058 1,756,2058 18,42,4949 987
101 t115_12_3, dt115_12_3 2058 1,756,2058 18,42,4949 987
102 t115_12_4, dt115_12_4 2058 1,756,2058 18,42,4949 987
103 t115_12_5, dt115_12_5 2058 1,756,2058 18,42,4949 987
104 t115_12_6, dt115_12_6 2058 1,756,2058 18,42,4949 987
105 t115_12_7, dt115_12_7 2058 1,756,2058 18,42,4949 987
106 t115_13_0, dt115_13_0 2058 1,756,2058 18,42,4949 987
107 t115_13_1, dt115_13_1 2058 1,756,2058 18,42,4949 987
108 t115_13_2, dt115_13_2 2058 1,756,2058 18,42,4949 987
109 t115_13_3, dt115_13_3 2058 1,756,2058 18,42,4949 987
110 t115_13_4, dt115_13_4 2058 1,756,2058 18,42,4949 987
111 t115_13_5, dt115_13_5 2058 1,756,2058 18,42,4949 987
112 t115_13_6, dt115_13_6 2058 1,756,2058 18,42,4949 987
113 t115_13_7, dt115_13_7 2058 1,756,2058 18,42,4949 987
114 t115_14_0, dt115_14_0 2058 1,756,2058 18,42,4949 987
115 t115_14_1, dt115_14_1 2058 1,756,2058 18,42,4949 987
116 t115_14_2, dt115_14_2 2058 1,756,2058 18,42,4949 987
117 t115_14_3, dt115_14_3 2058 1,756,2058 18,42,4949 987
118 t115_14_4, dt115_14_4 2058 1,756,2058 18,42,4949 987
119 t115_14_5, dt115_14_5 2058 1,756,2058 18,42,4949 987
120 t115_14_6, dt115_14_6 2058 1,756,2058 18,42,4949 987
121 t115_14_7, dt115_14_7 2058 1,756,2058 18,42,4949 987
122 t115_15_0, dt115_15_0 2058 1,756,2058 18,42,4949 987
123 t115_15_1, dt115_15_1 2058 1,756,2058 18,42,4949 987
124 t115_15_2, dt115_15_2 2058 1,756,2058 18,42,4949 987
125 t115_15_3, dt115_15_3 2058 1,756,2058 18,42,4949 987
126 t115_15_4, dt115_15_4 2058 1,756,2058 18,42,4949 987
127 t115_15_5, dt115_15_5 2058 1,756,2058 18,42,4949 987
128 t115_15_6, dt115_15_6 2058 1,756,2058 18,42,4949 987
129 t115_15_7, dt115_15_7 2058 1,756,2058 18,42,4949 987
130 t115_16_0, dt115_16_0 2058 1,756,2058 18,42,4949 987
131 t115_16_1, dt115_16_1 2058 1,756,2058 18,42,4949 987
132 t115_16_2, dt115_16_2 2058 1,756,2058 18,42,4949 987
133 t115_16_3, dt115_16_3 2058 1,756,2058 18,42,4949 987
134 t115_16_4, dt115_16_4 2058 1,756,2058 18,42,4949 987
135 t115_16_5, dt115_16_5 2058 1,756,2058 18,42,4949 987
136 t115_16_6, dt115_16_6 2058 1,756,2058 18,42,4949 987
137 t115_16_7, dt115_16_7 2058 1,756,2058 18,42,4949 987
138 t115_17_0, dt115_17_0 2058 1,756,2058 18,42,4949 987
139 t115_17_1, dt115_17_1 2058 1,756,2058 18,42,4949 987
140 t115_17_2, dt115_17_2 2058 1,756,2058 18,42,4949 987
141 t115_17_3, dt115_17_3 2058 1,756,2058 18,42,4949 987
142 t115_17_4, dt115_17_4 2058 1,756,2058 18,42,4949 987
143 t115_17_5, dt115_17_5 2058 1,756,2058 18,42,4949 987
144 t115_17_6, dt115_17_6 2058 1,756,2058 18,42,4949 987
145 t115_17_7, dt115_17_7 2058 1,756,2058 18,42,4949 987
146 t115_18_0, dt115_18_0 2058 1,756,2058 18,42,4949 987
147 t115_18_1, dt115_18_1 2058 1,756,2058 18,42,4949 987
148 t115_18_2, dt115_18_2 2058 1,756,2058 18,42,4949 987
149 t115_18_3, dt115_18_3 2058 1,756,2058 18,42,4949 987
150 t115_18_4, dt115_18_4 2058 1,756,2058 18,42,4949 987
151 t115_18_5, dt115_18_5 2058 1,756,2058 18,42,4949 987
152 t115_18_6, dt115_18_6 2058 1,756,2058 18,42,4949 987
153 t115_18_7, dt115_18_7 2058 1,756,2058 18,42,4949 987
154 t115_19_0, dt115_19_0 2058 1,756,2058 18,42,4949 987
155 t115_19_1, dt115_19_1 2058 1,756,2058 18,42,4949 987
156 t115_19_2, dt115_19_2 2058 1,756,2058 18,42,4949 987
157 t115_19_3, dt115_19_3 2058 1,756,2058 18,42,4949 987
158 t115_19_4, dt115_19_4 2058 1,756,2058 18,42,4949 987
159 t115_19_5, dt115_19_5 2058 1,756,2058 18,42,4949 987
160 t115_19_6, dt115_19_6 2058 1,756,2058 18,42,4949 987
161 t115_19_7, dt115_19_7 2058 1,756,2058 18,42,4949 987
162 t115_20_0, dt115_20_0 2058 1,756,2058 18,42,4949 987
163 t115_20_1, dt115_20_1 2058 1,756,2058 18,42,4949 987
164 t115_20_2, dt115_20_2 2058 1,756,2058 18,42,4949 987
165 t115_20_3, dt115_20_3 2058 1,756,2058 18,42,4949 987
166 t115_20_4, dt115_20_4 2058 1,756,2058 18,42,4949 987
167 t115_20_5, dt115_20_5 2058 1,756,2058 18,42,4949 987
168 t115_20_6, dt115_20_6 2058 1,756,2058 18,42,4949 987
169 t115_20_7, dt115_20_7 2058 1,756,2058 18,42,4949 987
170 t115_21_0, dt115_21_0 2058 1,756,2058 18,42,4949 987
171 t115_21_1, dt115_21_1 2058 1,756,2058 18,42,4949 987
172 t115_21_2, dt115_21_2 2058 1,756,2058 18,42,4949 987
173 t115_21_3, dt115_21_3 2058 1,756,2058 18,42,4949 987
174 t115_21_4, dt115_21_4 2058 1,756,2058 18,42,4949 987
175 t115_21_5, dt115_21_5 2058 1,756,2058 18,42,4949 987
176 t115_21_6, dt115_21_6 2058 1,756,2058 18,42,4949 987
177 t115_21_7, dt115_21_7 2058 1,756,2058 18,42,4949 987
178 t115_22_0, dt115_22_0 2058 1,756,2058 18,42,4949 987
179 t115_22_1, dt115_22_1 2058 1,756,2058 18,42,4949 987
180 t115_22_2, dt115_22_2 2058 1,756,2058 18,42,4949 987
181 t115_22_3, dt115_22_3 2058 1,756,2058 18,42,4949 987
182 t115_23_0, dt115_23_0 2058 1,756,2058 18,42,4949 987
183 t115_23_1, dt115_23_1 2058 1,756,2058 18,42,4949 987
184 t115_23_2, dt115_23_2 2058 1,756,2058 18,42,4949 987
185 t115_23_3, dt115_23_3 2058 1,756,2058 18,42,4949 987
186 t115_24_0, dt115_24_0 2058 1,756,2058 18,42,4949 987
187 t115_24_1, dt115_24_1 2058 1,756,2058 18,42,4949 987
188 t115_24_2, dt115_24_2 2058 1,756,2058 18,42,4949 987
189 t115_24_3, dt115_24_3 2058 1,756,2058 18,42,4949 987
190 t115_25_0, dt115_25_0 2058 1,756,2058 18,42,4949 987
191 t115_25_1, dt115_25_1 2058 1,756,2058 18,42,4949 987
192 t115_25_2, dt115_25_2 2058 1,756,2058 18,42,4949 987
193 t115_25_3, dt115_25_3 2058 1,756,2058 18,42,4949 987
194 t115_26_0, dt115_26_0 2058 1,756,2058 18,42,4949 987
195 t115_26_1, dt115_26_1 2058 1,756,2058 18,42,4949 987
196 t115_26_2, dt115_26_2 2058 1,756,2058 18,42,4949 987
197 t115_26_3, dt115_26_3 2058 1,756,2058 18,42,4949 987
198 t115_27_0, dt115_27_0 2058 1,756,2058 18,42,4949 987
199 t115_27_1, dt115_27_1 2058 1,756,2058 18,42,4949 987
200 t115_27_2, dt115_27_2 2058 1,756,2058 18,42,4949 987
201 t115_27_3, dt115_27_3 2058 1,756,2058 18,42,4949 987

Key to the table

Only one line is displayed for both a plane and its dual, an asterisk (*) in the first column indicating that the plane is self-dual. Each line includes the following information and isomorphism invariants for each plane.


/ revised February, 2011