Projective Planes of Order 49 Related to t113


I am currently compiling a list of known projective planes of order 49. As part of this enumeration, here are listed the plane t113 and all known planes of order 49 obtained from it by dualizing and deriving. Coming soon: also planes related by the method of lifting quotients. This list is currently incomplete; check back later for a complete enumeration.

Following the table is a key to the table.


Known Projective Planes of Order 49 Related to t113

Entry Plane |Autgp| Point Orbits Line Orbits 7-rank
1 Translation Plane t113, dual dt113 172872 12,2,4,63,122,2401 1,492,98,196,2943,5882 941
2 t113_0_0, dt113_0_0 2058 1,756,2058 18,42,4949 987
3 t113_0_1, dt113_0_1 2058 1,756,2058 18,42,4949 987
4 t113_0_2, dt113_0_2 2058 1,756,2058 18,42,4949 987
5 t113_0_3, dt113_0_3 2058 1,756,2058 18,42,4949 987
6 t113_0_4, dt113_0_4 2058 1,756,2058 18,42,4949 987
7 t113_0_5, dt113_0_5 2058 1,756,2058 18,42,4949 987
8 t113_0_6, dt113_0_6 2058 1,756,2058 18,42,4949 987
9 t113_0_7, dt113_0_7 2058 1,756,2058 18,42,4949 987
10 t113_1_0, dt113_1_0 2058 1,756,2058 18,42,4949 987
11 t113_1_1, dt113_1_1 2058 1,756,2058 18,42,4949 987
12 t113_1_2, dt113_1_2 2058 1,756,2058 18,42,4949 987
13 t113_1_3, dt113_1_3 2058 1,756,2058 18,42,4949 987
14 t113_1_4, dt113_1_4 2058 1,756,2058 18,42,4949 987
15 t113_1_5, dt113_1_5 2058 1,756,2058 18,42,4949 987
16 t113_1_6, dt113_1_6 2058 1,756,2058 18,42,4949 987
17 t113_1_7, dt113_1_7 2058 1,756,2058 18,42,4949 987
18 t113_2_0, dt113_2_0 2058 1,756,2058 18,42,4949 987
19 t113_2_1, dt113_2_1 2058 1,756,2058 18,42,4949 987
20 t113_2_2, dt113_2_2 2058 1,756,2058 18,42,4949 987
21 t113_2_3, dt113_2_3 2058 1,756,2058 18,42,4949 987
22 t113_3_0, dt113_3_0 2058 1,756,2058 18,42,4949 987
23 t113_3_1, dt113_3_1 2058 1,756,2058 18,42,4949 987
24 t113_3_2, dt113_3_2 2058 1,756,2058 18,42,4949 987
25 t113_3_3, dt113_3_3 2058 1,756,2058 18,42,4949 987
26 t113_4_0, dt113_4_0 2058 1,756,2058 18,42,4949 987
27 t113_4_1, dt113_4_1 2058 1,756,2058 18,42,4949 987
28 t113_4_2, dt113_4_2 2058 1,756,2058 18,42,4949 987
29 t113_4_3, dt113_4_3 2058 1,756,2058 18,42,4949 987
30 t113_5_0, dt113_5_0 6174 1,78,2116,2058 12,32,42,497,14714 987
31 t113_5_1, dt113_5_1 2058 1,756,2058 18,42,4949 987
32 t113_5_2, dt113_5_2 2058 1,756,2058 18,42,4949 987
33 t113_5_3, dt113_5_3 6174 1,78,2116,2058 12,32,42,497,14714 987
34 t113_6_0, dt113_6_0 2058 1,756,2058 18,42,4949 987
35 t113_6_1, dt113_6_1 6174 1,78,2116,2058 12,32,42,497,14714 985
36 t113_7_0, dt113_7_0 12348 1,72,143,212,427,2058 12,32,42,49,983,2947 983
37 t113_7_1, dt113_7_1 4116 1,78,1424,2058 18,42,49,9824 987
38 t113_8_0, dt113_8_0 4116 1,78,1424,2058 18,42,49,9824 987
39 t113_8_1, dt113_8_1 12348 1,72,143,212,427,2058 12,32,42,49,983,2947 985

Key to the table

Only one line is displayed for both a plane and its dual, an asterisk (*) in the first column indicating that the plane is self-dual. Each line includes the following information and isomorphism invariants for each plane.


/ revised February, 2011